We used the Meta-Analytic Stability and Change model (Anusic & Schimmack, 2015) to describe the trajectory of the test-retest correlations of risk preference over time.
\[ \begin{aligned} Y_{t2-t1} = rel \times \ (change \times \ (stabch^{time} - 1) + 1) \end{aligned} \]
\(Y_{t2-t1}\) : test-retest correlation for a specific time interval (i.e., number of years between t1 and t2)
\(rel\) : proportion of reliable variance
\(change\) : proportion of reliable variance explained by changing factors
\(stabch\) : the stability of the changing factors over time (per year)
\(time\) : number of years between t1 and t2
Below, we provide information on the model specifications and an overview of the model summaries, including posterior predictive checks (PPCs), approximate leave-one-out (LOO) cross-validation output, and convergence diagnostics (i.e., Rhat values, trace plots, effective sample size). We fitted the same model separately to the set of test-retest correlations for each risk preference measure category (i.e., propensity, frequency, and behavior).
To replicate these analyses, refer to the Workflow page
brms
# specify family
family <- brmsfamily(
family = "student",
link = "identity"
)
# formula
formula <- bf(
wcor|resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1),
nlf(rel ~ inv_logit(logitrel)),
nlf(change ~ inv_logit(logitchange)),
nlf(stabch ~ inv_logit(logitstabch)),
logitrel ~ 1 + age_dec_c*domain_name + age_dec_c2*domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample),
logitchange ~ 1 + age_dec_c*domain_name + age_dec_c2*domain_name + female_prop_c,
logitstabch ~ 1 + age_dec_c*domain_name + age_dec_c2*domain_name + female_prop_c,
nl = TRUE
)
# weakly informative priors
priors <-
prior(normal(0, 1), nlpar="logitrel", class = "b") +
prior(normal(0, 1), nlpar="logitchange", class = "b") +
prior(normal(0, 1), nlpar="logitstabch", class = "b") +
prior(cauchy(0, 1), nlpar="logitrel", class = "sd") +
prior(cauchy(0, 1), class = "sigma") +
prior(lkj(1), group="sample", class = "L")
brms
output## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: wcor | resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1)
## rel ~ inv_logit(logitrel)
## change ~ inv_logit(logitchange)
## stabch ~ inv_logit(logitstabch)
## logitrel ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample)
## logitchange ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
## logitstabch ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
## Data: data_w (Number of observations: 3794)
## Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 10000
##
## Multilevel Hyperparameters:
## ~sample (Number of levels: 53)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(logitrel_Intercept) 1.05 0.12 0.84 1.32 1.00 1380 2840
## sd(logitrel_age_dec_c) 0.07 0.02 0.05 0.12 1.00 2478 4769
## sd(logitrel_age_dec_c2) 0.03 0.01 0.02 0.04 1.00 2262 3770
## sd(logitrel_female_prop_c) 0.31 0.06 0.19 0.45 1.00 2748 4140
## cor(logitrel_Intercept,logitrel_age_dec_c) 0.21 0.31 -0.40 0.75 1.00 2547 3876
## cor(logitrel_Intercept,logitrel_age_dec_c2) -0.29 0.28 -0.76 0.31 1.00 3882 4982
## cor(logitrel_age_dec_c,logitrel_age_dec_c2) -0.12 0.27 -0.59 0.44 1.00 2241 4171
## cor(logitrel_Intercept,logitrel_female_prop_c) 0.52 0.18 0.11 0.79 1.00 3490 5418
## cor(logitrel_age_dec_c,logitrel_female_prop_c) -0.08 0.31 -0.64 0.52 1.00 1147 1874
## cor(logitrel_age_dec_c2,logitrel_female_prop_c) 0.14 0.30 -0.46 0.71 1.00 1355 2345
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept 0.46 0.20 0.07 0.85 1.00 587 1277
## logitrel_age_dec_c 0.02 0.06 -0.10 0.14 1.00 967 936
## logitrel_domain_namedri 0.12 0.10 -0.10 0.32 1.00 1255 2054
## logitrel_domain_nameeth 0.20 0.57 -0.79 1.48 1.00 1113 1754
## logitrel_domain_namegam 0.14 0.20 -0.22 0.55 1.00 3557 5109
## logitrel_domain_namegen 0.15 0.10 -0.07 0.33 1.00 827 1228
## logitrel_domain_namehea_gen -0.16 0.11 -0.39 0.06 1.00 1619 2861
## logitrel_domain_nameinv -0.01 0.09 -0.22 0.15 1.00 916 1110
## logitrel_domain_nameocc -0.37 0.10 -0.59 -0.18 1.00 1213 1552
## logitrel_domain_namesoc -0.27 0.23 -0.55 0.36 1.00 714 371
## logitrel_age_dec_c2 0.02 0.07 -0.04 0.23 1.02 266 300
## logitrel_female_prop_c -0.12 0.06 -0.23 -0.01 1.00 1257 3507
## logitrel_item_num_c 1.01 0.23 0.58 1.47 1.00 3724 5074
## logitrel_age_dec_c:domain_namedri -0.19 0.08 -0.36 -0.03 1.00 1962 2402
## logitrel_age_dec_c:domain_nameeth -0.00 0.34 -0.77 0.85 1.00 991 659
## logitrel_age_dec_c:domain_namegam 0.18 0.14 -0.09 0.45 1.00 3581 5552
## logitrel_age_dec_c:domain_namegen 0.05 0.06 -0.08 0.17 1.00 942 972
## logitrel_age_dec_c:domain_namehea_gen -0.10 0.09 -0.28 0.06 1.00 2210 3399
## logitrel_age_dec_c:domain_nameinv -0.02 0.06 -0.14 0.11 1.00 1124 866
## logitrel_age_dec_c:domain_nameocc 0.15 0.07 0.02 0.29 1.00 1345 1220
## logitrel_age_dec_c:domain_namesoc -0.02 0.11 -0.28 0.18 1.00 1297 1078
## logitrel_domain_namedri:age_dec_c2 0.02 0.07 -0.19 0.10 1.01 288 316
## logitrel_domain_nameeth:age_dec_c2 0.06 0.52 -0.29 1.73 1.01 265 305
## logitrel_domain_namegam:age_dec_c2 0.11 0.09 -0.12 0.27 1.01 429 366
## logitrel_domain_namegen:age_dec_c2 -0.06 0.07 -0.27 0.01 1.01 264 303
## logitrel_domain_namehea_gen:age_dec_c2 0.03 0.07 -0.18 0.13 1.01 308 311
## logitrel_domain_nameinv:age_dec_c2 -0.04 0.07 -0.26 0.02 1.01 267 308
## logitrel_domain_nameocc:age_dec_c2 -0.05 0.07 -0.27 0.03 1.01 271 299
## logitrel_domain_namesoc:age_dec_c2 -0.06 0.09 -0.28 0.11 1.01 318 385
## logitchange_Intercept -0.11 0.35 -0.70 0.68 1.01 907 1978
## logitchange_age_dec_c 0.40 0.26 -0.09 0.96 1.00 1999 2805
## logitchange_domain_namedri -0.27 0.58 -1.31 0.97 1.00 1914 3333
## logitchange_domain_nameeth 0.30 0.64 -0.79 1.74 1.00 946 4281
## logitchange_domain_namegam 0.46 0.91 -1.34 2.24 1.00 3495 5560
## logitchange_domain_namegen -0.07 0.41 -0.92 0.73 1.00 973 2045
## logitchange_domain_namehea_gen -0.11 0.46 -0.99 0.85 1.00 1634 2631
## logitchange_domain_nameinv -0.33 0.36 -1.12 0.29 1.00 950 2154
## logitchange_domain_nameocc -0.19 0.81 -1.67 1.52 1.00 1853 4664
## logitchange_domain_namesoc -0.64 0.80 -2.16 1.06 1.00 2835 4265
## logitchange_age_dec_c2 0.55 0.27 0.12 1.20 1.00 804 1880
## logitchange_female_prop_c 0.05 0.07 -0.09 0.19 1.00 1060 3225
## logitchange_age_dec_c:domain_namedri -0.04 0.51 -0.91 1.06 1.00 4009 4342
## logitchange_age_dec_c:domain_nameeth -0.33 0.63 -1.46 1.12 1.00 3132 4745
## logitchange_age_dec_c:domain_namegam 0.14 0.78 -1.39 1.75 1.00 5927 6754
## logitchange_age_dec_c:domain_namegen -0.27 0.31 -0.87 0.35 1.00 2313 3045
## logitchange_age_dec_c:domain_namehea_gen -0.17 0.39 -0.86 0.70 1.00 2789 3581
## logitchange_age_dec_c:domain_nameinv 0.79 0.30 0.18 1.37 1.00 2418 4034
## logitchange_age_dec_c:domain_nameocc 0.36 0.68 -0.93 1.73 1.00 3124 6091
## logitchange_age_dec_c:domain_namesoc -0.09 0.73 -1.45 1.52 1.00 4677 5795
## logitchange_domain_namedri:age_dec_c2 -0.10 0.37 -0.82 0.63 1.00 1197 2101
## logitchange_domain_nameeth:age_dec_c2 -0.35 0.58 -1.34 1.13 1.00 2083 3315
## logitchange_domain_namegam:age_dec_c2 0.96 0.76 -0.60 2.42 1.00 3166 2251
## logitchange_domain_namegen:age_dec_c2 -0.40 0.28 -1.05 0.04 1.00 743 1975
## logitchange_domain_namehea_gen:age_dec_c2 -0.33 0.32 -1.01 0.22 1.00 1097 1986
## logitchange_domain_nameinv:age_dec_c2 0.18 0.28 -0.47 0.62 1.00 849 1956
## logitchange_domain_nameocc:age_dec_c2 0.07 0.68 -1.03 1.68 1.00 1433 2813
## logitchange_domain_namesoc:age_dec_c2 -0.60 0.73 -2.13 1.06 1.00 2934 3783
## logitstabch_Intercept -0.61 0.42 -1.49 0.17 1.01 683 1830
## logitstabch_age_dec_c 0.51 0.24 0.04 0.98 1.00 1371 2815
## logitstabch_domain_namedri 0.47 0.64 -0.87 1.63 1.00 2737 4337
## logitstabch_domain_nameeth -0.18 0.75 -1.80 1.12 1.00 1297 3724
## logitstabch_domain_namegam -1.58 0.78 -3.05 -0.01 1.00 3981 5778
## logitstabch_domain_namegen 0.30 0.51 -0.64 1.34 1.00 921 2280
## logitstabch_domain_namehea_gen -0.53 0.69 -1.93 0.77 1.00 2838 2964
## logitstabch_domain_nameinv 0.25 0.44 -0.57 1.14 1.00 845 1835
## logitstabch_domain_nameocc 0.95 0.76 -0.80 2.17 1.00 1814 3549
## logitstabch_domain_namesoc 0.46 1.10 -2.00 2.32 1.00 975 610
## logitstabch_age_dec_c2 -0.22 0.17 -0.57 0.09 1.01 360 728
## logitstabch_female_prop_c -0.31 0.08 -0.46 -0.15 1.00 4487 7067
## logitstabch_age_dec_c:domain_namedri 0.52 0.41 -0.25 1.34 1.00 3485 5186
## logitstabch_age_dec_c:domain_nameeth 0.05 0.69 -1.34 1.46 1.00 2810 3774
## logitstabch_age_dec_c:domain_namegam -1.04 0.70 -2.58 0.23 1.00 3600 4892
## logitstabch_age_dec_c:domain_namegen -0.12 0.27 -0.66 0.39 1.00 1441 2518
## logitstabch_age_dec_c:domain_namehea_gen 0.19 0.46 -0.71 1.08 1.00 3180 5378
## logitstabch_age_dec_c:domain_nameinv 1.04 0.28 0.49 1.60 1.00 1926 3460
## logitstabch_age_dec_c:domain_nameocc -0.36 0.49 -1.24 0.73 1.00 2408 3438
## logitstabch_age_dec_c:domain_namesoc 0.04 0.83 -1.61 1.72 1.00 3717 5358
## logitstabch_domain_namedri:age_dec_c2 -0.07 0.19 -0.42 0.33 1.01 448 837
## logitstabch_domain_nameeth:age_dec_c2 -0.33 0.77 -2.11 0.77 1.01 302 611
## logitstabch_domain_namegam:age_dec_c2 -0.08 0.35 -0.77 0.57 1.00 1416 2511
## logitstabch_domain_namegen:age_dec_c2 0.18 0.18 -0.14 0.55 1.01 367 720
## logitstabch_domain_namehea_gen:age_dec_c2 -0.06 0.25 -0.70 0.36 1.01 607 1152
## logitstabch_domain_nameinv:age_dec_c2 -0.12 0.17 -0.43 0.23 1.01 371 763
## logitstabch_domain_nameocc:age_dec_c2 0.13 0.21 -0.25 0.56 1.01 579 1756
## logitstabch_domain_namesoc:age_dec_c2 0.30 0.83 -1.46 1.95 1.00 1038 1496
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.03 0.00 0.03 0.03 1.00 6413 6943
## nu 3.73 0.23 3.31 4.22 1.00 8057 7442
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Graphical posterior predictive checks
##
## Computed from 10000 by 3794 log-likelihood matrix.
##
## Estimate SE
## elpd_loo 3976.7 66.1
## p_loo 218.3 5.9
## looic -7953.5 132.2
## ------
## MCSE of elpd_loo is 0.2.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.1, 1.7]).
##
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.
In the tabs are panel-specific predictions for the trajectory of domain-specific test-retest correlations over time (predictions based on the weighted median age of the sample, 50% female, single-item measure as it is the most prevalent type of propensity measure).
brms
output## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: wcor | resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1)
## rel ~ inv_logit(logitrel)
## change ~ inv_logit(logitchange)
## stabch ~ inv_logit(logitstabch)
## logitrel ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample)
## logitchange ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
## logitstabch ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
## Data: data_w (Number of observations: 3963)
## Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 10000
##
## Multilevel Hyperparameters:
## ~sample (Number of levels: 36)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(logitrel_Intercept) 1.08 0.16 0.81 1.44 1.00 2200 3876
## sd(logitrel_age_dec_c) 0.24 0.07 0.14 0.40 1.00 1180 3022
## sd(logitrel_age_dec_c2) 0.10 0.02 0.07 0.15 1.00 2382 3415
## sd(logitrel_female_prop_c) 0.32 0.06 0.22 0.45 1.00 5075 6890
## cor(logitrel_Intercept,logitrel_age_dec_c) 0.39 0.21 -0.05 0.74 1.00 2840 4734
## cor(logitrel_Intercept,logitrel_age_dec_c2) -0.20 0.19 -0.55 0.18 1.00 3305 5157
## cor(logitrel_age_dec_c,logitrel_age_dec_c2) -0.14 0.26 -0.60 0.39 1.00 943 1948
## cor(logitrel_Intercept,logitrel_female_prop_c) 0.35 0.19 -0.05 0.67 1.00 5149 6442
## cor(logitrel_age_dec_c,logitrel_female_prop_c) 0.45 0.21 -0.00 0.81 1.00 2214 3993
## cor(logitrel_age_dec_c2,logitrel_female_prop_c) 0.31 0.23 -0.17 0.71 1.00 2925 4328
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept 0.41 0.41 -0.38 1.23 1.00 2995 5236
## logitrel_age_dec_c 0.27 0.26 -0.24 0.78 1.00 2143 3754
## logitrel_domain_namealc 0.63 0.26 0.11 1.12 1.00 2565 4594
## logitrel_domain_namedri -1.70 0.49 -2.61 -0.70 1.00 6451 5754
## logitrel_domain_namedru 0.33 0.26 -0.22 0.83 1.00 2893 4734
## logitrel_domain_namegam 0.29 0.92 -1.54 2.12 1.00 5985 6218
## logitrel_domain_nameocc 0.30 0.84 -1.31 1.99 1.00 6872 6286
## logitrel_domain_namesex 0.23 0.65 -0.91 1.69 1.00 5904 5523
## logitrel_domain_namesmo 1.95 0.26 1.42 2.46 1.00 2945 4679
## logitrel_age_dec_c2 0.37 0.16 0.07 0.70 1.00 1946 3313
## logitrel_female_prop_c -0.17 0.07 -0.32 -0.03 1.00 3987 5530
## logitrel_item_num_c 1.47 0.67 0.16 2.79 1.00 5476 6958
## logitrel_age_dec_c:domain_namealc -0.14 0.26 -0.64 0.36 1.00 2190 3804
## logitrel_age_dec_c:domain_namedri -0.02 0.54 -1.38 0.84 1.00 2850 3380
## logitrel_age_dec_c:domain_namedru -0.29 0.26 -0.79 0.23 1.00 2318 4147
## logitrel_age_dec_c:domain_namegam -0.21 0.87 -1.91 1.48 1.00 6274 7182
## logitrel_age_dec_c:domain_nameocc -0.28 0.82 -1.90 1.29 1.00 4953 6411
## logitrel_age_dec_c:domain_namesex -0.08 0.77 -1.69 1.36 1.00 6211 6106
## logitrel_age_dec_c:domain_namesmo 0.27 0.26 -0.24 0.78 1.00 2210 4143
## logitrel_domain_namealc:age_dec_c2 -0.43 0.16 -0.77 -0.14 1.00 1929 3260
## logitrel_domain_namedri:age_dec_c2 0.45 0.35 -0.10 1.34 1.00 2860 3541
## logitrel_domain_namedru:age_dec_c2 -0.27 0.17 -0.61 0.03 1.00 2023 3320
## logitrel_domain_namegam:age_dec_c2 -0.08 0.78 -1.48 1.61 1.00 3396 4962
## logitrel_domain_nameocc:age_dec_c2 -0.33 0.34 -0.99 0.32 1.00 4593 5267
## logitrel_domain_namesex:age_dec_c2 0.57 0.51 -0.35 1.72 1.00 5603 5669
## logitrel_domain_namesmo:age_dec_c2 -0.38 0.16 -0.72 -0.09 1.00 1950 3349
## logitchange_Intercept 0.04 0.43 -0.79 0.90 1.00 2754 4288
## logitchange_age_dec_c 0.35 0.40 -0.43 1.14 1.00 1710 3635
## logitchange_domain_namealc -0.47 0.43 -1.32 0.38 1.00 2801 4185
## logitchange_domain_namedri 0.14 0.93 -1.69 1.96 1.00 9965 7497
## logitchange_domain_namedru 0.19 0.58 -0.95 1.34 1.00 5468 6538
## logitchange_domain_namegam -0.09 0.96 -1.99 1.81 1.00 12359 7182
## logitchange_domain_nameocc 0.05 0.95 -1.83 1.89 1.00 12884 7491
## logitchange_domain_namesex 0.29 0.75 -1.23 1.68 1.00 5206 6540
## logitchange_domain_namesmo -0.52 0.43 -1.38 0.31 1.00 2763 4313
## logitchange_age_dec_c2 0.57 0.27 0.06 1.13 1.00 1399 2385
## logitchange_female_prop_c 0.16 0.07 0.03 0.29 1.00 8827 8175
## logitchange_age_dec_c:domain_namealc -0.46 0.40 -1.25 0.31 1.00 1741 3620
## logitchange_age_dec_c:domain_namedri -0.69 1.02 -2.57 1.35 1.00 2902 5965
## logitchange_age_dec_c:domain_namedru 0.69 0.60 -0.42 1.93 1.00 4394 5630
## logitchange_age_dec_c:domain_namegam -0.13 0.95 -1.98 1.75 1.00 10376 7946
## logitchange_age_dec_c:domain_nameocc -0.23 0.92 -2.02 1.60 1.00 9185 7742
## logitchange_age_dec_c:domain_namesex 0.26 0.68 -1.09 1.57 1.00 6545 6529
## logitchange_age_dec_c:domain_namesmo -0.17 0.40 -0.97 0.60 1.00 1701 3743
## logitchange_domain_namealc:age_dec_c2 -0.47 0.27 -1.03 0.04 1.00 1401 2377
## logitchange_domain_namedri:age_dec_c2 0.50 0.83 -0.95 2.16 1.00 2245 4163
## logitchange_domain_namedru:age_dec_c2 0.60 0.40 -0.13 1.42 1.00 3456 5556
## logitchange_domain_namegam:age_dec_c2 -0.08 0.90 -1.87 1.68 1.00 5674 7483
## logitchange_domain_nameocc:age_dec_c2 0.03 0.79 -1.45 1.74 1.00 3873 5087
## logitchange_domain_namesex:age_dec_c2 -0.12 0.32 -0.76 0.50 1.00 2312 4494
## logitchange_domain_namesmo:age_dec_c2 -0.52 0.27 -1.09 -0.01 1.00 1387 2323
## logitstabch_Intercept -1.07 0.50 -2.08 -0.12 1.00 3223 4870
## logitstabch_age_dec_c 0.54 0.37 -0.23 1.25 1.00 2006 3261
## logitstabch_domain_namealc -0.87 0.58 -1.97 0.31 1.00 4388 6321
## logitstabch_domain_namedri -0.71 1.01 -2.66 1.27 1.00 11072 7296
## logitstabch_domain_namedru 0.37 0.58 -0.75 1.51 1.00 4507 5360
## logitstabch_domain_namegam -0.32 0.98 -2.22 1.60 1.00 12783 7769
## logitstabch_domain_nameocc -0.48 0.95 -2.34 1.40 1.00 12235 7945
## logitstabch_domain_namesex -1.44 0.89 -3.20 0.31 1.00 9716 6953
## logitstabch_domain_namesmo -0.27 0.52 -1.27 0.77 1.00 3292 5111
## logitstabch_age_dec_c2 -0.29 0.24 -0.76 0.18 1.00 1595 3227
## logitstabch_female_prop_c 0.34 0.12 0.11 0.60 1.00 8386 5743
## logitstabch_age_dec_c:domain_namealc -0.42 0.39 -1.16 0.36 1.00 2197 3731
## logitstabch_age_dec_c:domain_namedri 1.30 0.90 -0.80 2.84 1.00 2689 5041
## logitstabch_age_dec_c:domain_namedru -0.45 0.38 -1.18 0.33 1.00 2086 3608
## logitstabch_age_dec_c:domain_namegam 0.08 0.92 -1.75 1.89 1.00 11551 7806
## logitstabch_age_dec_c:domain_nameocc 0.25 0.90 -1.52 2.01 1.00 9323 7573
## logitstabch_age_dec_c:domain_namesex 1.19 0.86 -0.49 2.84 1.00 6743 6157
## logitstabch_age_dec_c:domain_namesmo -0.60 0.38 -1.33 0.17 1.00 2091 3322
## logitstabch_domain_namealc:age_dec_c2 0.37 0.24 -0.10 0.85 1.00 1626 3236
## logitstabch_domain_namedri:age_dec_c2 -0.16 0.58 -1.48 0.88 1.00 2521 3361
## logitstabch_domain_namedru:age_dec_c2 -0.12 0.24 -0.59 0.37 1.00 1693 2893
## logitstabch_domain_namegam:age_dec_c2 0.22 0.89 -1.50 1.97 1.00 5741 6760
## logitstabch_domain_nameocc:age_dec_c2 0.22 0.68 -1.36 1.49 1.00 4216 4882
## logitstabch_domain_namesex:age_dec_c2 0.45 0.46 -0.47 1.33 1.00 5462 6078
## logitstabch_domain_namesmo:age_dec_c2 0.38 0.24 -0.09 0.86 1.00 1606 3312
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.07 0.00 0.06 0.07 1.00 7852 7392
## nu 2.91 0.18 2.58 3.28 1.00 8135 7814
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Graphical posterior predictive checks
##
## Computed from 10000 by 3963 log-likelihood matrix.
##
## Estimate SE
## elpd_loo 2697.2 67.9
## p_loo 201.2 6.2
## looic -5394.4 135.9
## ------
## MCSE of elpd_loo is NA.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.2, 1.5]).
##
## Pareto k diagnostic values:
## Count Pct. Min. ESS
## (-Inf, 0.7] (good) 3961 99.9% 879
## (0.7, 1] (bad) 1 0.0% <NA>
## (1, Inf) (very bad) 1 0.0% <NA>
## See help('pareto-k-diagnostic') for details.
In tabs are panel-specific predictions for the trajectory of domain-specific test-retest correlations over time (predictions based on the weighted median age of the sample, 50% female, single-item measure as it is the most prevalent type of frequency measure).
brms
output## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: wcor | resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1)
## rel ~ inv_logit(logitrel)
## change ~ inv_logit(logitchange)
## stabch ~ inv_logit(logitstabch)
## logitrel ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample)
## logitchange ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
## logitstabch ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
## Data: data_w (Number of observations: 708)
## Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 10000
##
## Multilevel Hyperparameters:
## ~sample (Number of levels: 24)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(logitrel_Intercept) 1.04 0.18 0.75 1.45 1.00 3683 6076
## sd(logitrel_age_dec_c) 0.12 0.05 0.03 0.25 1.00 3357 2971
## sd(logitrel_age_dec_c2) 0.03 0.02 0.00 0.07 1.00 3325 4147
## sd(logitrel_female_prop_c) 0.21 0.08 0.09 0.39 1.00 5967 6902
## cor(logitrel_Intercept,logitrel_age_dec_c) 0.25 0.33 -0.46 0.79 1.00 8414 7411
## cor(logitrel_Intercept,logitrel_age_dec_c2) -0.09 0.44 -0.83 0.76 1.00 10782 6792
## cor(logitrel_age_dec_c,logitrel_age_dec_c2) -0.00 0.43 -0.78 0.79 1.00 7609 7061
## cor(logitrel_Intercept,logitrel_female_prop_c) 0.49 0.32 -0.28 0.93 1.00 7884 6953
## cor(logitrel_age_dec_c,logitrel_female_prop_c) -0.20 0.37 -0.84 0.54 1.00 6253 7273
## cor(logitrel_age_dec_c2,logitrel_female_prop_c) -0.18 0.42 -0.85 0.69 1.00 4138 6469
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept -1.11 0.23 -1.56 -0.66 1.00 2179 3939
## logitrel_age_dec_c -0.05 0.06 -0.18 0.06 1.00 4364 5655
## logitrel_domain_namegam 0.02 0.07 -0.12 0.15 1.00 5544 7196
## logitrel_domain_nameins -0.26 0.09 -0.42 -0.08 1.00 6186 7519
## logitrel_domain_nameocc -0.13 0.07 -0.26 -0.00 1.00 6526 6717
## logitrel_age_dec_c2 0.01 0.02 -0.03 0.05 1.00 4879 4963
## logitrel_female_prop_c -0.20 0.09 -0.39 -0.03 1.00 4306 5381
## logitrel_item_num_c 0.42 0.32 -0.18 1.06 1.00 4945 5478
## logitrel_age_dec_c:domain_namegam 0.10 0.05 0.00 0.19 1.00 5715 6723
## logitrel_age_dec_c:domain_nameins -0.09 0.06 -0.23 0.03 1.00 5596 5965
## logitrel_age_dec_c:domain_nameocc -0.02 0.06 -0.14 0.09 1.00 3817 5563
## logitrel_domain_namegam:age_dec_c2 -0.00 0.02 -0.04 0.04 1.00 4808 5422
## logitrel_domain_nameins:age_dec_c2 0.05 0.03 -0.00 0.11 1.00 4671 3736
## logitrel_domain_nameocc:age_dec_c2 -0.02 0.02 -0.06 0.03 1.00 5047 4731
## logitchange_Intercept -0.26 0.87 -1.85 1.58 1.00 1794 5657
## logitchange_age_dec_c 0.01 0.71 -1.46 1.39 1.00 6331 7838
## logitchange_domain_namegam -0.56 0.98 -2.44 1.42 1.00 3032 7075
## logitchange_domain_nameins 0.29 0.91 -1.55 2.08 1.00 8955 7333
## logitchange_domain_nameocc -0.00 0.88 -1.68 1.74 1.00 1141 4547
## logitchange_age_dec_c2 0.23 0.76 -1.13 1.80 1.00 781 3368
## logitchange_female_prop_c -0.05 1.03 -2.03 1.73 1.01 470 3789
## logitchange_age_dec_c:domain_namegam -0.46 0.90 -2.18 1.33 1.00 10788 8148
## logitchange_age_dec_c:domain_nameins 0.01 0.90 -1.79 1.73 1.00 9073 7425
## logitchange_age_dec_c:domain_nameocc -0.44 0.77 -2.00 1.06 1.00 2031 5314
## logitchange_domain_namegam:age_dec_c2 -0.43 0.88 -2.18 1.35 1.00 4282 6684
## logitchange_domain_nameins:age_dec_c2 -0.18 0.85 -1.87 1.50 1.00 5877 6786
## logitchange_domain_nameocc:age_dec_c2 0.16 0.66 -1.16 1.45 1.00 2790 5388
## logitstabch_Intercept 0.47 0.78 -1.13 1.95 1.00 1702 5455
## logitstabch_age_dec_c 0.08 0.64 -1.16 1.39 1.00 5369 6513
## logitstabch_domain_namegam 0.50 0.91 -1.33 2.26 1.00 4221 7269
## logitstabch_domain_nameins -0.42 0.86 -2.05 1.32 1.00 7141 7861
## logitstabch_domain_nameocc -0.04 0.79 -1.64 1.52 1.00 1259 4432
## logitstabch_age_dec_c2 -0.06 0.60 -1.35 1.05 1.00 818 2854
## logitstabch_female_prop_c -0.11 0.90 -1.69 1.76 1.01 488 2894
## logitstabch_age_dec_c:domain_namegam 0.41 0.86 -1.33 2.05 1.00 9022 8000
## logitstabch_age_dec_c:domain_nameins -0.12 0.85 -1.76 1.59 1.00 7342 6752
## logitstabch_age_dec_c:domain_nameocc 0.36 0.67 -0.91 1.77 1.00 4929 6089
## logitstabch_domain_namegam:age_dec_c2 0.26 0.81 -1.38 1.89 1.00 5632 6671
## logitstabch_domain_nameins:age_dec_c2 0.01 0.75 -1.57 1.51 1.00 5168 6195
## logitstabch_domain_nameocc:age_dec_c2 -0.44 0.58 -1.67 0.66 1.00 1474 4206
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.03 0.01 0.01 0.04 1.00 4013 2314
## nu 6.18 1.44 4.09 9.62 1.00 6771 5239
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Graphical posterior predictive checks
##
## Computed from 10000 by 708 log-likelihood matrix.
##
## Estimate SE
## elpd_loo 643.4 26.1
## p_loo 69.3 3.3
## looic -1286.9 52.2
## ------
## MCSE of elpd_loo is 0.1.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.1, 1.4]).
##
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.
In tabs are panel-specific predictions for the trajectory of domain-specific test-retest correlations over time (predictions based on the weighted median age of the sample, 50% female, overall effect of item number).
For the modeling of the reliability parameter we did not include a random structure given that in this dataset close to 70% of the studies/samples had 4 or less observations. This results in a lack of response variability within each study/sample, and can be problematic for model convergence, as well as the estimation of random intercepts and slopes.
# specify family
family <- brmsfamily(
family = "student",
link = "identity"
)
# formula
formula <- bf(
wcor | se(se, sigma = TRUE) ~ rel * ((1-change) + (change) * (stabch^time_diff_dec)), #
nlf(rel ~ inv_logit(logitrel)),
nlf(change ~ inv_logit(logitchange)),
nlf(stabch ~ inv_logit(logitstabch)),
logitrel ~ 1 + construct*age_dec_c + construct*age_dec_c2 + female_prop_c + item_num_c,
logitchange ~ 1+ construct*age_dec_c + construct*age_dec_c2 + female_prop_c,
logitstabch ~ 1+ construct*age_dec_c + construct*age_dec_c2 + female_prop_c,
nl = TRUE
)
# weakly informative priors
priors <-
prior(normal(0,1), nlpar="logitrel", class = "b") +
prior(normal(0,1), nlpar="logitchange", class = "b") +
prior(normal(0,1), nlpar="logitstabch", class = "b") +
prior(normal(0,1), class = "sigma")
brms
output## Family: student
## Links: mu = identity; sigma = identity; nu = identity
## Formula: retest | resp_se(se, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1)
## rel ~ inv_logit(logitrel)
## change ~ inv_logit(logitchange)
## stabch ~ inv_logit(logitstabch)
## logitrel ~ 1 + age_dec_c * construct + age_dec_c2 * construct + female_prop_c + item_num_c
## logitchange ~ 1 + age_dec_c * construct + age_dec_c2 * construct + female_prop_c
## logitstabch ~ 1 + age_dec_c * construct + age_dec_c2 * construct + female_prop_c
## Data: data_as (Number of observations: 949)
## Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
## total post-warmup draws = 10000
##
## Regression Coefficients:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept 0.33 0.07 0.20 0.48 1.00 5079 5304
## logitrel_age_dec_c -0.16 0.05 -0.25 -0.05 1.00 2295 2195
## logitrel_constructaffe -0.43 0.10 -0.64 -0.23 1.00 7465 6855
## logitrel_constructlife 0.27 0.11 0.06 0.48 1.00 5391 6523
## logitrel_constructself -0.17 0.15 -0.43 0.18 1.00 4911 4225
## logitrel_age_dec_c2 0.05 0.02 0.01 0.11 1.00 1615 1445
## logitrel_female_prop_c -0.02 0.07 -0.16 0.13 1.00 9098 7318
## logitrel_item_num_c 0.67 0.08 0.52 0.83 1.00 10888 7815
## logitrel_age_dec_c:constructaffe -0.01 0.06 -0.14 0.11 1.00 2968 2778
## logitrel_age_dec_c:constructlife 0.18 0.05 0.07 0.28 1.00 2530 2359
## logitrel_age_dec_c:constructself -0.23 0.13 -0.46 0.07 1.00 2125 1787
## logitrel_constructaffe:age_dec_c2 -0.00 0.03 -0.07 0.05 1.00 2072 1794
## logitrel_constructlife:age_dec_c2 -0.05 0.03 -0.11 -0.01 1.00 1876 1687
## logitrel_constructself:age_dec_c2 0.04 0.06 -0.04 0.21 1.00 1796 1355
## logitchange_Intercept -0.07 0.43 -0.89 0.79 1.00 1272 2628
## logitchange_age_dec_c 0.07 0.39 -0.70 0.83 1.00 868 1961
## logitchange_constructaffe 0.53 0.70 -0.71 2.06 1.00 4030 5420
## logitchange_constructlife 0.40 0.47 -0.49 1.34 1.00 1531 4998
## logitchange_constructself -0.25 0.60 -1.47 0.84 1.00 1990 4131
## logitchange_age_dec_c2 0.31 0.21 -0.01 0.81 1.00 1457 1888
## logitchange_female_prop_c -0.22 0.10 -0.42 -0.04 1.00 9605 6783
## logitchange_age_dec_c:constructaffe -0.42 0.64 -1.69 0.89 1.00 2852 4897
## logitchange_age_dec_c:constructlife 0.24 0.42 -0.56 1.11 1.00 1037 3300
## logitchange_age_dec_c:constructself -0.70 0.55 -1.82 0.28 1.00 1562 3269
## logitchange_constructaffe:age_dec_c2 0.42 0.59 -0.34 1.81 1.00 2999 4380
## logitchange_constructlife:age_dec_c2 -0.15 0.22 -0.65 0.20 1.00 1669 3294
## logitchange_constructself:age_dec_c2 -0.48 0.23 -0.99 -0.10 1.00 1896 2921
## logitstabch_Intercept -0.11 0.52 -1.23 0.79 1.00 1552 2954
## logitstabch_age_dec_c 0.88 0.48 -0.30 1.65 1.00 675 1228
## logitstabch_constructaffe 0.23 0.64 -1.15 1.42 1.00 2491 4482
## logitstabch_constructlife -0.49 0.57 -1.61 0.62 1.00 1959 3889
## logitstabch_constructself -0.16 0.85 -1.96 1.42 1.00 4113 5683
## logitstabch_age_dec_c2 -0.32 0.21 -0.82 0.03 1.00 679 1069
## logitstabch_female_prop_c -0.43 0.28 -1.10 0.01 1.00 7964 5139
## logitstabch_age_dec_c:constructaffe -0.55 0.59 -1.75 0.75 1.00 874 1202
## logitstabch_age_dec_c:constructlife -0.27 0.49 -1.04 0.93 1.00 680 1206
## logitstabch_age_dec_c:constructself -0.05 0.76 -1.49 1.57 1.00 1143 2348
## logitstabch_constructaffe:age_dec_c2 0.19 0.25 -0.31 0.73 1.00 858 1141
## logitstabch_constructlife:age_dec_c2 0.21 0.21 -0.15 0.72 1.00 694 1102
## logitstabch_constructself:age_dec_c2 -0.33 0.37 -1.01 0.47 1.00 1426 2973
##
## Further Distributional Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 0.07 0.00 0.07 0.08 1.00 7693 6868
## nu 3.35 0.56 2.49 4.66 1.00 7902 6667
##
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
NOT APPLICABLE
Graphical posterior predictive checks
##
## Computed from 10000 by 949 log-likelihood matrix.
##
## Estimate SE
## elpd_loo 798.7 31.2
## p_loo 47.7 2.2
## looic -1597.5 62.3
## ------
## MCSE of elpd_loo is 0.1.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.1, 1.2]).
##
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.
Construct-specific predictions for the trajectory of test-retest correlations over time (predictions based on the weighted mean age of the respondents for each construct, 50% female, overall effect of item number).
Social