Brief Description

We used the Meta-Analytic Stability and Change model (Anusic & Schimmack, 2015) to describe the trajectory of the test-retest correlations of risk preference over time.


\[ \begin{aligned} Y_{t2-t1} = rel \times \ (change \times \ (stabch^{time} - 1) + 1) \end{aligned} \]


\(Y_{t2-t1}\) : test-retest correlation for a specific time interval (i.e., number of years between t1 and t2)

\(rel\) : proportion of reliable variance

\(change\) : proportion of reliable variance explained by changing factors

\(stabch\) : the stability of the changing factors over time (per year)

\(time\) : number of years between t1 and t2



Illustration of MASC parameters. Adapted from Anusic and Schimack, 2015

Illustration of MASC parameters. Adapted from Anusic and Schimack, 2015


Below, we provide information on the model specifications and an overview of the model summaries, including posterior predictive checks (PPCs), approximate leave-one-out (LOO) cross-validation output, and convergence diagnostics (i.e., Rhat values, trace plots, effective sample size). We fitted the same model separately to the set of test-retest correlations for each risk preference measure category (i.e., propensity, frequency, and behavior).

To replicate these analyses, refer to the Workflow page


Model specification in brms

# specify family
family <- brmsfamily(
  family = "student", 
  link = "identity"
)


# formula
formula <- bf(
  wcor|resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1),
  nlf(rel ~ inv_logit(logitrel)),
  nlf(change ~ inv_logit(logitchange)),
  nlf(stabch ~ inv_logit(logitstabch)),
  logitrel ~ 1 + age_dec_c*domain_name + age_dec_c2*domain_name +  female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample),
  logitchange ~ 1 + age_dec_c*domain_name + age_dec_c2*domain_name + female_prop_c, 
  logitstabch ~ 1  + age_dec_c*domain_name + age_dec_c2*domain_name + female_prop_c,
  nl = TRUE
)


# weakly informative priors
priors <-
  prior(normal(0, 1), nlpar="logitrel", class = "b") +
  prior(normal(0, 1), nlpar="logitchange", class = "b") +
  prior(normal(0, 1), nlpar="logitstabch", class = "b") +
  prior(cauchy(0, 1), nlpar="logitrel", class = "sd")  +
  prior(cauchy(0, 1), class = "sigma")  +
  prior(lkj(1), group="sample", class = "L") 




Fitted Models: Risk Preference

Propensity

Model Summary

brms output
summary(fit_masc)
##  Family: student 
##   Links: mu = identity; sigma = identity; nu = identity 
## Formula: wcor | resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1) 
##          rel ~ inv_logit(logitrel)
##          change ~ inv_logit(logitchange)
##          stabch ~ inv_logit(logitstabch)
##          logitrel ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample)
##          logitchange ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
##          logitstabch ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
##    Data: data_w (Number of observations: 3794) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Multilevel Hyperparameters:
## ~sample (Number of levels: 53) 
##                                                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(logitrel_Intercept)                              1.05      0.12     0.84     1.32 1.00     1380     2840
## sd(logitrel_age_dec_c)                              0.07      0.02     0.05     0.12 1.00     2478     4769
## sd(logitrel_age_dec_c2)                             0.03      0.01     0.02     0.04 1.00     2262     3770
## sd(logitrel_female_prop_c)                          0.31      0.06     0.19     0.45 1.00     2748     4140
## cor(logitrel_Intercept,logitrel_age_dec_c)          0.21      0.31    -0.40     0.75 1.00     2547     3876
## cor(logitrel_Intercept,logitrel_age_dec_c2)        -0.29      0.28    -0.76     0.31 1.00     3882     4982
## cor(logitrel_age_dec_c,logitrel_age_dec_c2)        -0.12      0.27    -0.59     0.44 1.00     2241     4171
## cor(logitrel_Intercept,logitrel_female_prop_c)      0.52      0.18     0.11     0.79 1.00     3490     5418
## cor(logitrel_age_dec_c,logitrel_female_prop_c)     -0.08      0.31    -0.64     0.52 1.00     1147     1874
## cor(logitrel_age_dec_c2,logitrel_female_prop_c)     0.14      0.30    -0.46     0.71 1.00     1355     2345
## 
## Regression Coefficients:
##                                           Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept                            0.46      0.20     0.07     0.85 1.00      587     1277
## logitrel_age_dec_c                            0.02      0.06    -0.10     0.14 1.00      967      936
## logitrel_domain_namedri                       0.12      0.10    -0.10     0.32 1.00     1255     2054
## logitrel_domain_nameeth                       0.20      0.57    -0.79     1.48 1.00     1113     1754
## logitrel_domain_namegam                       0.14      0.20    -0.22     0.55 1.00     3557     5109
## logitrel_domain_namegen                       0.15      0.10    -0.07     0.33 1.00      827     1228
## logitrel_domain_namehea_gen                  -0.16      0.11    -0.39     0.06 1.00     1619     2861
## logitrel_domain_nameinv                      -0.01      0.09    -0.22     0.15 1.00      916     1110
## logitrel_domain_nameocc                      -0.37      0.10    -0.59    -0.18 1.00     1213     1552
## logitrel_domain_namesoc                      -0.27      0.23    -0.55     0.36 1.00      714      371
## logitrel_age_dec_c2                           0.02      0.07    -0.04     0.23 1.02      266      300
## logitrel_female_prop_c                       -0.12      0.06    -0.23    -0.01 1.00     1257     3507
## logitrel_item_num_c                           1.01      0.23     0.58     1.47 1.00     3724     5074
## logitrel_age_dec_c:domain_namedri            -0.19      0.08    -0.36    -0.03 1.00     1962     2402
## logitrel_age_dec_c:domain_nameeth            -0.00      0.34    -0.77     0.85 1.00      991      659
## logitrel_age_dec_c:domain_namegam             0.18      0.14    -0.09     0.45 1.00     3581     5552
## logitrel_age_dec_c:domain_namegen             0.05      0.06    -0.08     0.17 1.00      942      972
## logitrel_age_dec_c:domain_namehea_gen        -0.10      0.09    -0.28     0.06 1.00     2210     3399
## logitrel_age_dec_c:domain_nameinv            -0.02      0.06    -0.14     0.11 1.00     1124      866
## logitrel_age_dec_c:domain_nameocc             0.15      0.07     0.02     0.29 1.00     1345     1220
## logitrel_age_dec_c:domain_namesoc            -0.02      0.11    -0.28     0.18 1.00     1297     1078
## logitrel_domain_namedri:age_dec_c2            0.02      0.07    -0.19     0.10 1.01      288      316
## logitrel_domain_nameeth:age_dec_c2            0.06      0.52    -0.29     1.73 1.01      265      305
## logitrel_domain_namegam:age_dec_c2            0.11      0.09    -0.12     0.27 1.01      429      366
## logitrel_domain_namegen:age_dec_c2           -0.06      0.07    -0.27     0.01 1.01      264      303
## logitrel_domain_namehea_gen:age_dec_c2        0.03      0.07    -0.18     0.13 1.01      308      311
## logitrel_domain_nameinv:age_dec_c2           -0.04      0.07    -0.26     0.02 1.01      267      308
## logitrel_domain_nameocc:age_dec_c2           -0.05      0.07    -0.27     0.03 1.01      271      299
## logitrel_domain_namesoc:age_dec_c2           -0.06      0.09    -0.28     0.11 1.01      318      385
## logitchange_Intercept                        -0.11      0.35    -0.70     0.68 1.01      907     1978
## logitchange_age_dec_c                         0.40      0.26    -0.09     0.96 1.00     1999     2805
## logitchange_domain_namedri                   -0.27      0.58    -1.31     0.97 1.00     1914     3333
## logitchange_domain_nameeth                    0.30      0.64    -0.79     1.74 1.00      946     4281
## logitchange_domain_namegam                    0.46      0.91    -1.34     2.24 1.00     3495     5560
## logitchange_domain_namegen                   -0.07      0.41    -0.92     0.73 1.00      973     2045
## logitchange_domain_namehea_gen               -0.11      0.46    -0.99     0.85 1.00     1634     2631
## logitchange_domain_nameinv                   -0.33      0.36    -1.12     0.29 1.00      950     2154
## logitchange_domain_nameocc                   -0.19      0.81    -1.67     1.52 1.00     1853     4664
## logitchange_domain_namesoc                   -0.64      0.80    -2.16     1.06 1.00     2835     4265
## logitchange_age_dec_c2                        0.55      0.27     0.12     1.20 1.00      804     1880
## logitchange_female_prop_c                     0.05      0.07    -0.09     0.19 1.00     1060     3225
## logitchange_age_dec_c:domain_namedri         -0.04      0.51    -0.91     1.06 1.00     4009     4342
## logitchange_age_dec_c:domain_nameeth         -0.33      0.63    -1.46     1.12 1.00     3132     4745
## logitchange_age_dec_c:domain_namegam          0.14      0.78    -1.39     1.75 1.00     5927     6754
## logitchange_age_dec_c:domain_namegen         -0.27      0.31    -0.87     0.35 1.00     2313     3045
## logitchange_age_dec_c:domain_namehea_gen     -0.17      0.39    -0.86     0.70 1.00     2789     3581
## logitchange_age_dec_c:domain_nameinv          0.79      0.30     0.18     1.37 1.00     2418     4034
## logitchange_age_dec_c:domain_nameocc          0.36      0.68    -0.93     1.73 1.00     3124     6091
## logitchange_age_dec_c:domain_namesoc         -0.09      0.73    -1.45     1.52 1.00     4677     5795
## logitchange_domain_namedri:age_dec_c2        -0.10      0.37    -0.82     0.63 1.00     1197     2101
## logitchange_domain_nameeth:age_dec_c2        -0.35      0.58    -1.34     1.13 1.00     2083     3315
## logitchange_domain_namegam:age_dec_c2         0.96      0.76    -0.60     2.42 1.00     3166     2251
## logitchange_domain_namegen:age_dec_c2        -0.40      0.28    -1.05     0.04 1.00      743     1975
## logitchange_domain_namehea_gen:age_dec_c2    -0.33      0.32    -1.01     0.22 1.00     1097     1986
## logitchange_domain_nameinv:age_dec_c2         0.18      0.28    -0.47     0.62 1.00      849     1956
## logitchange_domain_nameocc:age_dec_c2         0.07      0.68    -1.03     1.68 1.00     1433     2813
## logitchange_domain_namesoc:age_dec_c2        -0.60      0.73    -2.13     1.06 1.00     2934     3783
## logitstabch_Intercept                        -0.61      0.42    -1.49     0.17 1.01      683     1830
## logitstabch_age_dec_c                         0.51      0.24     0.04     0.98 1.00     1371     2815
## logitstabch_domain_namedri                    0.47      0.64    -0.87     1.63 1.00     2737     4337
## logitstabch_domain_nameeth                   -0.18      0.75    -1.80     1.12 1.00     1297     3724
## logitstabch_domain_namegam                   -1.58      0.78    -3.05    -0.01 1.00     3981     5778
## logitstabch_domain_namegen                    0.30      0.51    -0.64     1.34 1.00      921     2280
## logitstabch_domain_namehea_gen               -0.53      0.69    -1.93     0.77 1.00     2838     2964
## logitstabch_domain_nameinv                    0.25      0.44    -0.57     1.14 1.00      845     1835
## logitstabch_domain_nameocc                    0.95      0.76    -0.80     2.17 1.00     1814     3549
## logitstabch_domain_namesoc                    0.46      1.10    -2.00     2.32 1.00      975      610
## logitstabch_age_dec_c2                       -0.22      0.17    -0.57     0.09 1.01      360      728
## logitstabch_female_prop_c                    -0.31      0.08    -0.46    -0.15 1.00     4487     7067
## logitstabch_age_dec_c:domain_namedri          0.52      0.41    -0.25     1.34 1.00     3485     5186
## logitstabch_age_dec_c:domain_nameeth          0.05      0.69    -1.34     1.46 1.00     2810     3774
## logitstabch_age_dec_c:domain_namegam         -1.04      0.70    -2.58     0.23 1.00     3600     4892
## logitstabch_age_dec_c:domain_namegen         -0.12      0.27    -0.66     0.39 1.00     1441     2518
## logitstabch_age_dec_c:domain_namehea_gen      0.19      0.46    -0.71     1.08 1.00     3180     5378
## logitstabch_age_dec_c:domain_nameinv          1.04      0.28     0.49     1.60 1.00     1926     3460
## logitstabch_age_dec_c:domain_nameocc         -0.36      0.49    -1.24     0.73 1.00     2408     3438
## logitstabch_age_dec_c:domain_namesoc          0.04      0.83    -1.61     1.72 1.00     3717     5358
## logitstabch_domain_namedri:age_dec_c2        -0.07      0.19    -0.42     0.33 1.01      448      837
## logitstabch_domain_nameeth:age_dec_c2        -0.33      0.77    -2.11     0.77 1.01      302      611
## logitstabch_domain_namegam:age_dec_c2        -0.08      0.35    -0.77     0.57 1.00     1416     2511
## logitstabch_domain_namegen:age_dec_c2         0.18      0.18    -0.14     0.55 1.01      367      720
## logitstabch_domain_namehea_gen:age_dec_c2    -0.06      0.25    -0.70     0.36 1.01      607     1152
## logitstabch_domain_nameinv:age_dec_c2        -0.12      0.17    -0.43     0.23 1.01      371      763
## logitstabch_domain_nameocc:age_dec_c2         0.13      0.21    -0.25     0.56 1.01      579     1756
## logitstabch_domain_namesoc:age_dec_c2         0.30      0.83    -1.46     1.95 1.00     1038     1496
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.03      0.00     0.03     0.03 1.00     6413     6943
## nu        3.73      0.23     3.31     4.22 1.00     8057     7442
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).




MCMC diagnostics

logitrel parameter






logitchange parameter






logitstabch parameter






Random Structure






PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 3794 log-likelihood matrix.
## 
##          Estimate    SE
## elpd_loo   3976.7  66.1
## p_loo       218.3   5.9
## looic     -7953.5 132.2
## ------
## MCSE of elpd_loo is 0.2.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.1, 1.7]).
## 
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.




By-Panel Predictions

In the tabs are panel-specific predictions for the trajectory of domain-specific test-retest correlations over time (predictions based on the weighted median age of the sample, 50% female, single-item measure as it is the most prevalent type of propensity measure).

Driving




Ethical




Gambling




General Risk




General Health




Investment




Occupational




Recreational




Social







Frequency

Model Summary

brms output
summary(fit_masc)
##  Family: student 
##   Links: mu = identity; sigma = identity; nu = identity 
## Formula: wcor | resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1) 
##          rel ~ inv_logit(logitrel)
##          change ~ inv_logit(logitchange)
##          stabch ~ inv_logit(logitstabch)
##          logitrel ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample)
##          logitchange ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
##          logitstabch ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
##    Data: data_w (Number of observations: 3963) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Multilevel Hyperparameters:
## ~sample (Number of levels: 36) 
##                                                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(logitrel_Intercept)                              1.08      0.16     0.81     1.44 1.00     2200     3876
## sd(logitrel_age_dec_c)                              0.24      0.07     0.14     0.40 1.00     1180     3022
## sd(logitrel_age_dec_c2)                             0.10      0.02     0.07     0.15 1.00     2382     3415
## sd(logitrel_female_prop_c)                          0.32      0.06     0.22     0.45 1.00     5075     6890
## cor(logitrel_Intercept,logitrel_age_dec_c)          0.39      0.21    -0.05     0.74 1.00     2840     4734
## cor(logitrel_Intercept,logitrel_age_dec_c2)        -0.20      0.19    -0.55     0.18 1.00     3305     5157
## cor(logitrel_age_dec_c,logitrel_age_dec_c2)        -0.14      0.26    -0.60     0.39 1.00      943     1948
## cor(logitrel_Intercept,logitrel_female_prop_c)      0.35      0.19    -0.05     0.67 1.00     5149     6442
## cor(logitrel_age_dec_c,logitrel_female_prop_c)      0.45      0.21    -0.00     0.81 1.00     2214     3993
## cor(logitrel_age_dec_c2,logitrel_female_prop_c)     0.31      0.23    -0.17     0.71 1.00     2925     4328
## 
## Regression Coefficients:
##                                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept                        0.41      0.41    -0.38     1.23 1.00     2995     5236
## logitrel_age_dec_c                        0.27      0.26    -0.24     0.78 1.00     2143     3754
## logitrel_domain_namealc                   0.63      0.26     0.11     1.12 1.00     2565     4594
## logitrel_domain_namedri                  -1.70      0.49    -2.61    -0.70 1.00     6451     5754
## logitrel_domain_namedru                   0.33      0.26    -0.22     0.83 1.00     2893     4734
## logitrel_domain_namegam                   0.29      0.92    -1.54     2.12 1.00     5985     6218
## logitrel_domain_nameocc                   0.30      0.84    -1.31     1.99 1.00     6872     6286
## logitrel_domain_namesex                   0.23      0.65    -0.91     1.69 1.00     5904     5523
## logitrel_domain_namesmo                   1.95      0.26     1.42     2.46 1.00     2945     4679
## logitrel_age_dec_c2                       0.37      0.16     0.07     0.70 1.00     1946     3313
## logitrel_female_prop_c                   -0.17      0.07    -0.32    -0.03 1.00     3987     5530
## logitrel_item_num_c                       1.47      0.67     0.16     2.79 1.00     5476     6958
## logitrel_age_dec_c:domain_namealc        -0.14      0.26    -0.64     0.36 1.00     2190     3804
## logitrel_age_dec_c:domain_namedri        -0.02      0.54    -1.38     0.84 1.00     2850     3380
## logitrel_age_dec_c:domain_namedru        -0.29      0.26    -0.79     0.23 1.00     2318     4147
## logitrel_age_dec_c:domain_namegam        -0.21      0.87    -1.91     1.48 1.00     6274     7182
## logitrel_age_dec_c:domain_nameocc        -0.28      0.82    -1.90     1.29 1.00     4953     6411
## logitrel_age_dec_c:domain_namesex        -0.08      0.77    -1.69     1.36 1.00     6211     6106
## logitrel_age_dec_c:domain_namesmo         0.27      0.26    -0.24     0.78 1.00     2210     4143
## logitrel_domain_namealc:age_dec_c2       -0.43      0.16    -0.77    -0.14 1.00     1929     3260
## logitrel_domain_namedri:age_dec_c2        0.45      0.35    -0.10     1.34 1.00     2860     3541
## logitrel_domain_namedru:age_dec_c2       -0.27      0.17    -0.61     0.03 1.00     2023     3320
## logitrel_domain_namegam:age_dec_c2       -0.08      0.78    -1.48     1.61 1.00     3396     4962
## logitrel_domain_nameocc:age_dec_c2       -0.33      0.34    -0.99     0.32 1.00     4593     5267
## logitrel_domain_namesex:age_dec_c2        0.57      0.51    -0.35     1.72 1.00     5603     5669
## logitrel_domain_namesmo:age_dec_c2       -0.38      0.16    -0.72    -0.09 1.00     1950     3349
## logitchange_Intercept                     0.04      0.43    -0.79     0.90 1.00     2754     4288
## logitchange_age_dec_c                     0.35      0.40    -0.43     1.14 1.00     1710     3635
## logitchange_domain_namealc               -0.47      0.43    -1.32     0.38 1.00     2801     4185
## logitchange_domain_namedri                0.14      0.93    -1.69     1.96 1.00     9965     7497
## logitchange_domain_namedru                0.19      0.58    -0.95     1.34 1.00     5468     6538
## logitchange_domain_namegam               -0.09      0.96    -1.99     1.81 1.00    12359     7182
## logitchange_domain_nameocc                0.05      0.95    -1.83     1.89 1.00    12884     7491
## logitchange_domain_namesex                0.29      0.75    -1.23     1.68 1.00     5206     6540
## logitchange_domain_namesmo               -0.52      0.43    -1.38     0.31 1.00     2763     4313
## logitchange_age_dec_c2                    0.57      0.27     0.06     1.13 1.00     1399     2385
## logitchange_female_prop_c                 0.16      0.07     0.03     0.29 1.00     8827     8175
## logitchange_age_dec_c:domain_namealc     -0.46      0.40    -1.25     0.31 1.00     1741     3620
## logitchange_age_dec_c:domain_namedri     -0.69      1.02    -2.57     1.35 1.00     2902     5965
## logitchange_age_dec_c:domain_namedru      0.69      0.60    -0.42     1.93 1.00     4394     5630
## logitchange_age_dec_c:domain_namegam     -0.13      0.95    -1.98     1.75 1.00    10376     7946
## logitchange_age_dec_c:domain_nameocc     -0.23      0.92    -2.02     1.60 1.00     9185     7742
## logitchange_age_dec_c:domain_namesex      0.26      0.68    -1.09     1.57 1.00     6545     6529
## logitchange_age_dec_c:domain_namesmo     -0.17      0.40    -0.97     0.60 1.00     1701     3743
## logitchange_domain_namealc:age_dec_c2    -0.47      0.27    -1.03     0.04 1.00     1401     2377
## logitchange_domain_namedri:age_dec_c2     0.50      0.83    -0.95     2.16 1.00     2245     4163
## logitchange_domain_namedru:age_dec_c2     0.60      0.40    -0.13     1.42 1.00     3456     5556
## logitchange_domain_namegam:age_dec_c2    -0.08      0.90    -1.87     1.68 1.00     5674     7483
## logitchange_domain_nameocc:age_dec_c2     0.03      0.79    -1.45     1.74 1.00     3873     5087
## logitchange_domain_namesex:age_dec_c2    -0.12      0.32    -0.76     0.50 1.00     2312     4494
## logitchange_domain_namesmo:age_dec_c2    -0.52      0.27    -1.09    -0.01 1.00     1387     2323
## logitstabch_Intercept                    -1.07      0.50    -2.08    -0.12 1.00     3223     4870
## logitstabch_age_dec_c                     0.54      0.37    -0.23     1.25 1.00     2006     3261
## logitstabch_domain_namealc               -0.87      0.58    -1.97     0.31 1.00     4388     6321
## logitstabch_domain_namedri               -0.71      1.01    -2.66     1.27 1.00    11072     7296
## logitstabch_domain_namedru                0.37      0.58    -0.75     1.51 1.00     4507     5360
## logitstabch_domain_namegam               -0.32      0.98    -2.22     1.60 1.00    12783     7769
## logitstabch_domain_nameocc               -0.48      0.95    -2.34     1.40 1.00    12235     7945
## logitstabch_domain_namesex               -1.44      0.89    -3.20     0.31 1.00     9716     6953
## logitstabch_domain_namesmo               -0.27      0.52    -1.27     0.77 1.00     3292     5111
## logitstabch_age_dec_c2                   -0.29      0.24    -0.76     0.18 1.00     1595     3227
## logitstabch_female_prop_c                 0.34      0.12     0.11     0.60 1.00     8386     5743
## logitstabch_age_dec_c:domain_namealc     -0.42      0.39    -1.16     0.36 1.00     2197     3731
## logitstabch_age_dec_c:domain_namedri      1.30      0.90    -0.80     2.84 1.00     2689     5041
## logitstabch_age_dec_c:domain_namedru     -0.45      0.38    -1.18     0.33 1.00     2086     3608
## logitstabch_age_dec_c:domain_namegam      0.08      0.92    -1.75     1.89 1.00    11551     7806
## logitstabch_age_dec_c:domain_nameocc      0.25      0.90    -1.52     2.01 1.00     9323     7573
## logitstabch_age_dec_c:domain_namesex      1.19      0.86    -0.49     2.84 1.00     6743     6157
## logitstabch_age_dec_c:domain_namesmo     -0.60      0.38    -1.33     0.17 1.00     2091     3322
## logitstabch_domain_namealc:age_dec_c2     0.37      0.24    -0.10     0.85 1.00     1626     3236
## logitstabch_domain_namedri:age_dec_c2    -0.16      0.58    -1.48     0.88 1.00     2521     3361
## logitstabch_domain_namedru:age_dec_c2    -0.12      0.24    -0.59     0.37 1.00     1693     2893
## logitstabch_domain_namegam:age_dec_c2     0.22      0.89    -1.50     1.97 1.00     5741     6760
## logitstabch_domain_nameocc:age_dec_c2     0.22      0.68    -1.36     1.49 1.00     4216     4882
## logitstabch_domain_namesex:age_dec_c2     0.45      0.46    -0.47     1.33 1.00     5462     6078
## logitstabch_domain_namesmo:age_dec_c2     0.38      0.24    -0.09     0.86 1.00     1606     3312
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.07      0.00     0.06     0.07 1.00     7852     7392
## nu        2.91      0.18     2.58     3.28 1.00     8135     7814
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).




MCMC diagnostics

logitrel parameter






logitchange parameter






logitstabch parameter






Random Structure






PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 3963 log-likelihood matrix.
## 
##          Estimate    SE
## elpd_loo   2697.2  67.9
## p_loo       201.2   6.2
## looic     -5394.4 135.9
## ------
## MCSE of elpd_loo is NA.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.2, 1.5]).
## 
## Pareto k diagnostic values:
##                          Count Pct.    Min. ESS
## (-Inf, 0.7]   (good)     3961  99.9%   879     
##    (0.7, 1]   (bad)         1   0.0%   <NA>    
##    (1, Inf)   (very bad)    1   0.0%   <NA>    
## See help('pareto-k-diagnostic') for details.




By-Panel Predictions

In tabs are panel-specific predictions for the trajectory of domain-specific test-retest correlations over time (predictions based on the weighted median age of the sample, 50% female, single-item measure as it is the most prevalent type of frequency measure).

Alcohol




Driving




Drugs




Ethical




Gambling




Occupational




Sexual Intercourse




Smoking







Behaviour

Model Summary

brms output
summary(fit_masc)
##  Family: student 
##   Links: mu = identity; sigma = identity; nu = identity 
## Formula: wcor | resp_se(sei, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1) 
##          rel ~ inv_logit(logitrel)
##          change ~ inv_logit(logitchange)
##          stabch ~ inv_logit(logitstabch)
##          logitrel ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c + item_num_c + (1 + age_dec_c + age_dec_c2 + female_prop_c | sample)
##          logitchange ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
##          logitstabch ~ 1 + age_dec_c * domain_name + age_dec_c2 * domain_name + female_prop_c
##    Data: data_w (Number of observations: 708) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Multilevel Hyperparameters:
## ~sample (Number of levels: 24) 
##                                                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(logitrel_Intercept)                              1.04      0.18     0.75     1.45 1.00     3683     6076
## sd(logitrel_age_dec_c)                              0.12      0.05     0.03     0.25 1.00     3357     2971
## sd(logitrel_age_dec_c2)                             0.03      0.02     0.00     0.07 1.00     3325     4147
## sd(logitrel_female_prop_c)                          0.21      0.08     0.09     0.39 1.00     5967     6902
## cor(logitrel_Intercept,logitrel_age_dec_c)          0.25      0.33    -0.46     0.79 1.00     8414     7411
## cor(logitrel_Intercept,logitrel_age_dec_c2)        -0.09      0.44    -0.83     0.76 1.00    10782     6792
## cor(logitrel_age_dec_c,logitrel_age_dec_c2)        -0.00      0.43    -0.78     0.79 1.00     7609     7061
## cor(logitrel_Intercept,logitrel_female_prop_c)      0.49      0.32    -0.28     0.93 1.00     7884     6953
## cor(logitrel_age_dec_c,logitrel_female_prop_c)     -0.20      0.37    -0.84     0.54 1.00     6253     7273
## cor(logitrel_age_dec_c2,logitrel_female_prop_c)    -0.18      0.42    -0.85     0.69 1.00     4138     6469
## 
## Regression Coefficients:
##                                       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept                       -1.11      0.23    -1.56    -0.66 1.00     2179     3939
## logitrel_age_dec_c                       -0.05      0.06    -0.18     0.06 1.00     4364     5655
## logitrel_domain_namegam                   0.02      0.07    -0.12     0.15 1.00     5544     7196
## logitrel_domain_nameins                  -0.26      0.09    -0.42    -0.08 1.00     6186     7519
## logitrel_domain_nameocc                  -0.13      0.07    -0.26    -0.00 1.00     6526     6717
## logitrel_age_dec_c2                       0.01      0.02    -0.03     0.05 1.00     4879     4963
## logitrel_female_prop_c                   -0.20      0.09    -0.39    -0.03 1.00     4306     5381
## logitrel_item_num_c                       0.42      0.32    -0.18     1.06 1.00     4945     5478
## logitrel_age_dec_c:domain_namegam         0.10      0.05     0.00     0.19 1.00     5715     6723
## logitrel_age_dec_c:domain_nameins        -0.09      0.06    -0.23     0.03 1.00     5596     5965
## logitrel_age_dec_c:domain_nameocc        -0.02      0.06    -0.14     0.09 1.00     3817     5563
## logitrel_domain_namegam:age_dec_c2       -0.00      0.02    -0.04     0.04 1.00     4808     5422
## logitrel_domain_nameins:age_dec_c2        0.05      0.03    -0.00     0.11 1.00     4671     3736
## logitrel_domain_nameocc:age_dec_c2       -0.02      0.02    -0.06     0.03 1.00     5047     4731
## logitchange_Intercept                    -0.26      0.87    -1.85     1.58 1.00     1794     5657
## logitchange_age_dec_c                     0.01      0.71    -1.46     1.39 1.00     6331     7838
## logitchange_domain_namegam               -0.56      0.98    -2.44     1.42 1.00     3032     7075
## logitchange_domain_nameins                0.29      0.91    -1.55     2.08 1.00     8955     7333
## logitchange_domain_nameocc               -0.00      0.88    -1.68     1.74 1.00     1141     4547
## logitchange_age_dec_c2                    0.23      0.76    -1.13     1.80 1.00      781     3368
## logitchange_female_prop_c                -0.05      1.03    -2.03     1.73 1.01      470     3789
## logitchange_age_dec_c:domain_namegam     -0.46      0.90    -2.18     1.33 1.00    10788     8148
## logitchange_age_dec_c:domain_nameins      0.01      0.90    -1.79     1.73 1.00     9073     7425
## logitchange_age_dec_c:domain_nameocc     -0.44      0.77    -2.00     1.06 1.00     2031     5314
## logitchange_domain_namegam:age_dec_c2    -0.43      0.88    -2.18     1.35 1.00     4282     6684
## logitchange_domain_nameins:age_dec_c2    -0.18      0.85    -1.87     1.50 1.00     5877     6786
## logitchange_domain_nameocc:age_dec_c2     0.16      0.66    -1.16     1.45 1.00     2790     5388
## logitstabch_Intercept                     0.47      0.78    -1.13     1.95 1.00     1702     5455
## logitstabch_age_dec_c                     0.08      0.64    -1.16     1.39 1.00     5369     6513
## logitstabch_domain_namegam                0.50      0.91    -1.33     2.26 1.00     4221     7269
## logitstabch_domain_nameins               -0.42      0.86    -2.05     1.32 1.00     7141     7861
## logitstabch_domain_nameocc               -0.04      0.79    -1.64     1.52 1.00     1259     4432
## logitstabch_age_dec_c2                   -0.06      0.60    -1.35     1.05 1.00      818     2854
## logitstabch_female_prop_c                -0.11      0.90    -1.69     1.76 1.01      488     2894
## logitstabch_age_dec_c:domain_namegam      0.41      0.86    -1.33     2.05 1.00     9022     8000
## logitstabch_age_dec_c:domain_nameins     -0.12      0.85    -1.76     1.59 1.00     7342     6752
## logitstabch_age_dec_c:domain_nameocc      0.36      0.67    -0.91     1.77 1.00     4929     6089
## logitstabch_domain_namegam:age_dec_c2     0.26      0.81    -1.38     1.89 1.00     5632     6671
## logitstabch_domain_nameins:age_dec_c2     0.01      0.75    -1.57     1.51 1.00     5168     6195
## logitstabch_domain_nameocc:age_dec_c2    -0.44      0.58    -1.67     0.66 1.00     1474     4206
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.03      0.01     0.01     0.04 1.00     4013     2314
## nu        6.18      1.44     4.09     9.62 1.00     6771     5239
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).




MCMC diagnostics

logitrel parameter






logitchange parameter






logitstabch parameter






Random Structure






PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 708 log-likelihood matrix.
## 
##          Estimate   SE
## elpd_loo    643.4 26.1
## p_loo        69.3  3.3
## looic     -1286.9 52.2
## ------
## MCSE of elpd_loo is 0.1.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.1, 1.4]).
## 
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.




By-Panel Predictions

In tabs are panel-specific predictions for the trajectory of domain-specific test-retest correlations over time (predictions based on the weighted median age of the sample, 50% female, overall effect of item number).

Gambling




Insurance




Investment




Occupational







Fitted Model: Anusic & Schimmack (2015)

Model Specfication

For the modeling of the reliability parameter we did not include a random structure given that in this dataset close to 70% of the studies/samples had 4 or less observations. This results in a lack of response variability within each study/sample, and can be problematic for model convergence, as well as the estimation of random intercepts and slopes.

# specify family
family <- brmsfamily(
  family = "student", 
  link = "identity"
)


# formula
formula <- bf(
  wcor | se(se, sigma = TRUE) ~ rel * ((1-change) + (change) * (stabch^time_diff_dec)),  #
  nlf(rel ~ inv_logit(logitrel)),
  nlf(change ~ inv_logit(logitchange)),
  nlf(stabch ~ inv_logit(logitstabch)),
  logitrel ~ 1 + construct*age_dec_c + construct*age_dec_c2  + female_prop_c + item_num_c,
  logitchange ~ 1+ construct*age_dec_c + construct*age_dec_c2 + female_prop_c, 
  logitstabch ~ 1+ construct*age_dec_c + construct*age_dec_c2  + female_prop_c, 
  nl = TRUE
)


# weakly informative priors
priors <-
  prior(normal(0,1), nlpar="logitrel", class = "b") +
  prior(normal(0,1), nlpar="logitchange", class = "b") +
  prior(normal(0,1), nlpar="logitstabch", class = "b") +
  prior(normal(0,1),  class = "sigma")

Model Summary

brms output

summary(fit_masc)
##  Family: student 
##   Links: mu = identity; sigma = identity; nu = identity 
## Formula: retest | resp_se(se, sigma = TRUE) ~ rel * (change * ((stabch^time_diff_dec) - 1) + 1) 
##          rel ~ inv_logit(logitrel)
##          change ~ inv_logit(logitchange)
##          stabch ~ inv_logit(logitstabch)
##          logitrel ~ 1 + age_dec_c * construct + age_dec_c2 * construct + female_prop_c + item_num_c
##          logitchange ~ 1 + age_dec_c * construct + age_dec_c2 * construct + female_prop_c
##          logitstabch ~ 1 + age_dec_c * construct + age_dec_c2 * construct + female_prop_c
##    Data: data_as (Number of observations: 949) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Regression Coefficients:
##                                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## logitrel_Intercept                       0.33      0.07     0.20     0.48 1.00     5079     5304
## logitrel_age_dec_c                      -0.16      0.05    -0.25    -0.05 1.00     2295     2195
## logitrel_constructaffe                  -0.43      0.10    -0.64    -0.23 1.00     7465     6855
## logitrel_constructlife                   0.27      0.11     0.06     0.48 1.00     5391     6523
## logitrel_constructself                  -0.17      0.15    -0.43     0.18 1.00     4911     4225
## logitrel_age_dec_c2                      0.05      0.02     0.01     0.11 1.00     1615     1445
## logitrel_female_prop_c                  -0.02      0.07    -0.16     0.13 1.00     9098     7318
## logitrel_item_num_c                      0.67      0.08     0.52     0.83 1.00    10888     7815
## logitrel_age_dec_c:constructaffe        -0.01      0.06    -0.14     0.11 1.00     2968     2778
## logitrel_age_dec_c:constructlife         0.18      0.05     0.07     0.28 1.00     2530     2359
## logitrel_age_dec_c:constructself        -0.23      0.13    -0.46     0.07 1.00     2125     1787
## logitrel_constructaffe:age_dec_c2       -0.00      0.03    -0.07     0.05 1.00     2072     1794
## logitrel_constructlife:age_dec_c2       -0.05      0.03    -0.11    -0.01 1.00     1876     1687
## logitrel_constructself:age_dec_c2        0.04      0.06    -0.04     0.21 1.00     1796     1355
## logitchange_Intercept                   -0.07      0.43    -0.89     0.79 1.00     1272     2628
## logitchange_age_dec_c                    0.07      0.39    -0.70     0.83 1.00      868     1961
## logitchange_constructaffe                0.53      0.70    -0.71     2.06 1.00     4030     5420
## logitchange_constructlife                0.40      0.47    -0.49     1.34 1.00     1531     4998
## logitchange_constructself               -0.25      0.60    -1.47     0.84 1.00     1990     4131
## logitchange_age_dec_c2                   0.31      0.21    -0.01     0.81 1.00     1457     1888
## logitchange_female_prop_c               -0.22      0.10    -0.42    -0.04 1.00     9605     6783
## logitchange_age_dec_c:constructaffe     -0.42      0.64    -1.69     0.89 1.00     2852     4897
## logitchange_age_dec_c:constructlife      0.24      0.42    -0.56     1.11 1.00     1037     3300
## logitchange_age_dec_c:constructself     -0.70      0.55    -1.82     0.28 1.00     1562     3269
## logitchange_constructaffe:age_dec_c2     0.42      0.59    -0.34     1.81 1.00     2999     4380
## logitchange_constructlife:age_dec_c2    -0.15      0.22    -0.65     0.20 1.00     1669     3294
## logitchange_constructself:age_dec_c2    -0.48      0.23    -0.99    -0.10 1.00     1896     2921
## logitstabch_Intercept                   -0.11      0.52    -1.23     0.79 1.00     1552     2954
## logitstabch_age_dec_c                    0.88      0.48    -0.30     1.65 1.00      675     1228
## logitstabch_constructaffe                0.23      0.64    -1.15     1.42 1.00     2491     4482
## logitstabch_constructlife               -0.49      0.57    -1.61     0.62 1.00     1959     3889
## logitstabch_constructself               -0.16      0.85    -1.96     1.42 1.00     4113     5683
## logitstabch_age_dec_c2                  -0.32      0.21    -0.82     0.03 1.00      679     1069
## logitstabch_female_prop_c               -0.43      0.28    -1.10     0.01 1.00     7964     5139
## logitstabch_age_dec_c:constructaffe     -0.55      0.59    -1.75     0.75 1.00      874     1202
## logitstabch_age_dec_c:constructlife     -0.27      0.49    -1.04     0.93 1.00      680     1206
## logitstabch_age_dec_c:constructself     -0.05      0.76    -1.49     1.57 1.00     1143     2348
## logitstabch_constructaffe:age_dec_c2     0.19      0.25    -0.31     0.73 1.00      858     1141
## logitstabch_constructlife:age_dec_c2     0.21      0.21    -0.15     0.72 1.00      694     1102
## logitstabch_constructself:age_dec_c2    -0.33      0.37    -1.01     0.47 1.00     1426     2973
## 
## Further Distributional Parameters:
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     0.07      0.00     0.07     0.08 1.00     7693     6868
## nu        3.35      0.56     2.49     4.66 1.00     7902     6667
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

MCMC diagnostics

logitrel parameter






logitchange parameter






logitstabch parameter






Random Structure

NOT APPLICABLE




PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 949 log-likelihood matrix.
## 
##          Estimate   SE
## elpd_loo    798.7 31.2
## p_loo        47.7  2.2
## looic     -1597.5 62.3
## ------
## MCSE of elpd_loo is 0.1.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.1, 1.2]).
## 
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.




By-Construct Predictions

Construct-specific predictions for the trajectory of test-retest correlations over time (predictions based on the weighted mean age of the respondents for each construct, 50% female, overall effect of item number).