Brief Description

Below we provide information on the specifications of the Bayesian random-effects meta-analysis and meta-regressions, as well as an overview of the model summaries, including posterior predictive checks (PPCs), approximate leave-one-out (LOO) cross-validation output, and convergence diagnostics (i.e., Rhat values, trace plots, effective sample size).

To replicate these analyses, refer to the Workflow page


Bayesian random-effects meta-analysis and meta-regressions

Intercept-Only

Model specification in brms

family <- brmsfamily(
  family = "student", 
  link = "identity"
)

formula <-  bf(wcor_z|se(sei_z, sigma = TRUE) ~ 0 + Intercept + (1|sample),
               sigma ~ 0 + Intercept + (1 | sample))

priors <-  c(prior(normal(0, 1), class = "b", coef = "Intercept"),
             prior(normal(0, 2), class = "b", dpar = "sigma", coef = "Intercept"),
             prior(cauchy(0, 0.3), class = "sd"),
             prior(cauchy(0, 0.3), class = "sd", dpar = "sigma"))

Model Summary

summary(fit_ma)
##  Family: student 
##   Links: mu = identity; sigma = log; nu = identity 
## Formula: wcor_z | se(sei_z, sigma = TRUE) ~ 0 + Intercept + (1 | sample) 
##          sigma ~ 0 + Intercept + (1 | sample)
##    Data: dt_ma (Number of observations: 5149) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Multilevel Hyperparameters:
## ~sample (Number of levels: 49) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.08      0.01     0.06     0.11 1.00     1447     2764
## sd(sigma_Intercept)     0.49      0.07     0.37     0.64 1.00     1612     3102
## 
## Regression Coefficients:
##                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           0.17      0.01     0.14     0.20 1.00      867     1733
## sigma_Intercept    -1.91      0.08    -2.06    -1.76 1.00     1142     2531
## 
## Further Distributional Parameters:
##    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## nu     3.21      0.17     2.88     3.56 1.00     6915     6636
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).




MCMC diagnostics






PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 5149 log-likelihood matrix.
## 
##          Estimate    SE
## elpd_loo    291.8  83.5
## p_loo       101.8   3.0
## looic      -583.7 167.1
## ------
## MCSE of elpd_loo is 0.1.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.6, 2.3]).
## 
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.




Measure-Pair as Covariate

Model specification in brms

family <- brmsfamily(
  family = "student", 
  link = "identity"
)

formula <-  bf(wcor_z|se(sei_z, sigma = TRUE) ~ 0 + meas_pair_id + (1|sample),
               sigma ~ 0 + meas_pair_id + (1|sample))

priors <-  c(prior(normal(0, 1), class = "b"),
             prior(normal(0, 2), class = "b", dpar = "sigma"),
             prior(cauchy(0, 0.3), class = "sd"),
             prior(cauchy(0, 0.3), class = "sd", dpar = "sigma"))




Model Summary

summary(fit_ma)
##  Family: student 
##   Links: mu = identity; sigma = log; nu = identity 
## Formula: wcor_z | se(sei_z, sigma = TRUE) ~ 0 + meas_pair_id + (1 | sample) 
##          sigma ~ 0 + meas_pair_id + (1 | sample)
##    Data: dt_ma (Number of observations: 5149) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Multilevel Hyperparameters:
## ~sample (Number of levels: 49) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.05      0.01     0.04     0.06 1.00     2523     4050
## sd(sigma_Intercept)     0.41      0.06     0.31     0.53 1.00     2496     4495
## 
## Regression Coefficients:
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## meas_pair_id1           0.21      0.02     0.17     0.25 1.00     6247     7102
## meas_pair_id2           0.02      0.01     0.00     0.03 1.00      992     1942
## meas_pair_id3           0.21      0.01     0.19     0.24 1.00     1810     4244
## meas_pair_id4           0.15      0.01     0.13     0.16 1.00     1163     2508
## meas_pair_id5           0.06      0.01     0.04     0.07 1.00      910     1840
## meas_pair_id6           0.44      0.01     0.42     0.46 1.00     1290     3021
## sigma_meas_pair_id1    -1.72      0.12    -1.96    -1.49 1.00     3145     5028
## sigma_meas_pair_id2    -3.88      0.20    -4.32    -3.52 1.00     5609     5471
## sigma_meas_pair_id3    -1.46      0.07    -1.60    -1.31 1.00     1524     3363
## sigma_meas_pair_id4    -2.82      0.10    -3.02    -2.63 1.00     2191     4267
## sigma_meas_pair_id5    -3.02      0.08    -3.17    -2.86 1.00     1542     3302
## sigma_meas_pair_id6    -1.65      0.08    -1.81    -1.50 1.00     1448     2703
## 
## Further Distributional Parameters:
##    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## nu     4.95      0.36     4.30     5.69 1.00    10305     8045
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).




MCMC diagnostics






PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 5149 log-likelihood matrix.
## 
##          Estimate    SE
## elpd_loo   2166.5  83.5
## p_loo        92.4   2.8
## looic     -4333.0 166.9
## ------
## MCSE of elpd_loo is 0.1.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.6, 2.3]).
## 
## All Pareto k estimates are good (k < 0.7).
## See help('pareto-k-diagnostic') for details.




Domain-Pair as Covariate

Model specification in brms

family <- brmsfamily(
  family = "student", 
  link = "identity")

formula <-  bf(wcor_z|se(sei_z, sigma = TRUE) ~ 0 + name_pair_id + (1|sample),
               sigma ~ 0 + name_pair_id + (1|sample))

priors <-  c(prior(normal(0, 0.5), class = "b"),
             prior(normal(0, 1), class = "b", dpar = "sigma"),
             prior(cauchy(0, 0.3), class = "sd"),
             prior(cauchy(0, 0.3), class = "sd", dpar = "sigma"))




Model Summary

summary(fit_ma)
##  Family: student 
##   Links: mu = identity; sigma = log; nu = identity 
## Formula: wcor_z | se(sei_z, sigma = TRUE) ~ 0 + domain_pair_id + (1 | sample) 
##          sigma ~ 0 + domain_pair_id + (1 | sample)
##    Data: dt_ma (Number of observations: 5149) 
##   Draws: 2 chains, each with iter = 7000; warmup = 2000; thin = 1;
##          total post-warmup draws = 10000
## 
## Multilevel Hyperparameters:
## ~sample (Number of levels: 49) 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)           0.04      0.01     0.03     0.06 1.00     2056     3444
## sd(sigma_Intercept)     4.13      0.47     3.34     5.17 1.00      400     1057
## 
## Regression Coefficients:
##                         Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## domain_pair_id1             0.25      0.02     0.21     0.28 1.00     1850     3607
## domain_pair_id10            0.01      0.02    -0.03     0.05 1.00     1674     5089
## domain_pair_id100           0.10      0.02     0.06     0.14 1.00     1725     5680
## domain_pair_id101           0.15      0.03     0.09     0.22 1.00     5833     6346
## domain_pair_id102           0.05      0.02     0.01     0.08 1.00     1605     4173
## domain_pair_id103           0.05      0.02    -0.00     0.10 1.00     3493     5061
## domain_pair_id104           0.03      0.03    -0.03     0.08 1.00     2785     5439
## domain_pair_id105           0.04      0.02    -0.01     0.09 1.00     3133     5014
## domain_pair_id106          -0.00      0.03    -0.06     0.06 1.00     3818     5682
## domain_pair_id107           0.43      0.02     0.39     0.47 1.00     2270     4903
## domain_pair_id108           0.01      0.02    -0.03     0.05 1.00     2194     4332
## domain_pair_id109           0.04      0.02    -0.00     0.08 1.00     1835     4304
## domain_pair_id11            0.02      0.02    -0.02     0.05 1.00     1168     3302
## domain_pair_id110           0.04      0.02     0.00     0.09 1.00     2357     5272
## domain_pair_id111          -0.05      0.02    -0.09    -0.01 1.00     2280     4191
## domain_pair_id112          -0.03      0.02    -0.06     0.01 1.00     1669     5177
## domain_pair_id113          -0.08      0.02    -0.12    -0.05 1.00     1929     4754
## domain_pair_id114           0.24      0.06     0.11     0.36 1.00     4730     3726
## domain_pair_id115           0.15      0.04     0.07     0.23 1.00     6856     5820
## domain_pair_id116           0.20      0.05     0.10     0.29 1.00     3845     4191
## domain_pair_id117           0.07      0.02     0.02     0.11 1.00     2192     4274
## domain_pair_id118           0.24      0.02     0.19     0.28 1.00     2320     5333
## domain_pair_id119           0.04      0.02    -0.00     0.08 1.00     2395     4991
## domain_pair_id12           -0.00      0.04    -0.10     0.07 1.00     8589     7332
## domain_pair_id120           0.18      0.02     0.14     0.22 1.00     1871     5708
## domain_pair_id121           0.10      0.01     0.08     0.13 1.00      844     2275
## domain_pair_id122           0.03      0.02    -0.01     0.07 1.00     1396     4353
## domain_pair_id123           0.10      0.02     0.06     0.14 1.00     2598     4463
## domain_pair_id124           0.06      0.02     0.01     0.09 1.00     1965     5471
## domain_pair_id125           0.10      0.03     0.04     0.17 1.00     4373     5179
## domain_pair_id126           0.08      0.04    -0.01     0.17 1.00     9722     6341
## domain_pair_id127           0.10      0.04     0.02     0.20 1.00     8371     6249
## domain_pair_id128           0.22      0.02     0.18     0.27 1.00     3097     5914
## domain_pair_id129           0.06      0.02     0.02     0.10 1.00     2378     5469
## domain_pair_id13            0.03      0.02    -0.01     0.06 1.00      999     3059
## domain_pair_id130           0.17      0.03     0.12     0.22 1.00     3513     6229
## domain_pair_id131           0.08      0.02     0.04     0.12 1.00     2494     5448
## domain_pair_id132           0.02      0.02    -0.01     0.07 1.00     1910     4216
## domain_pair_id133           0.11      0.03     0.06     0.16 1.00     3735     5952
## domain_pair_id134           0.12      0.03     0.06     0.18 1.00     3875     5753
## domain_pair_id135           0.10      0.02     0.06     0.15 1.00     2882     5940
## domain_pair_id136           0.23      0.02     0.18     0.28 1.00     4094     5320
## domain_pair_id137          -0.03      0.01    -0.05    -0.02 1.00      442     1079
## domain_pair_id138          -0.01      0.06    -0.13     0.11 1.00    13989     6566
## domain_pair_id139           0.01      0.01    -0.01     0.03 1.00      412     1169
## domain_pair_id14            0.03      0.02    -0.00     0.06 1.00     1053     2615
## domain_pair_id140           0.00      0.01    -0.02     0.02 1.00      441     1025
## domain_pair_id141          -0.03      0.01    -0.05    -0.01 1.00      588     1144
## domain_pair_id142          -0.03      0.01    -0.05    -0.01 1.00      498     1163
## domain_pair_id143          -0.04      0.01    -0.06    -0.02 1.00      476     1032
## domain_pair_id144          -0.06      0.01    -0.08    -0.04 1.00      442     1046
## domain_pair_id145           1.18      0.03     1.13     1.24 1.00     3819     5082
## domain_pair_id146           0.15      0.02     0.10     0.20 1.00     2354     5123
## domain_pair_id147           0.21      0.02     0.17     0.26 1.00     2412     4777
## domain_pair_id148           0.49      0.02     0.46     0.52 1.00     1284     3815
## domain_pair_id149           0.37      0.02     0.33     0.40 1.00     1362     2657
## domain_pair_id15            0.01      0.02    -0.02     0.04 1.00      912     3112
## domain_pair_id150           0.49      0.02     0.46     0.52 1.00     1169     2462
## domain_pair_id151           0.44      0.02     0.41     0.47 1.00     1041     3300
## domain_pair_id152           0.50      0.02     0.47     0.53 1.00     1173     2939
## domain_pair_id153           0.26      0.02     0.22     0.29 1.00     1538     4174
## domain_pair_id154           0.18      0.10    -0.04     0.38 1.00     6955     5160
## domain_pair_id155           0.19      0.03     0.14     0.24 1.00     3151     5074
## domain_pair_id156           0.41      0.04     0.35     0.49 1.00     5944     7054
## domain_pair_id157           0.04      0.03    -0.02     0.09 1.00     4338     7361
## domain_pair_id158           0.20      0.02     0.15     0.25 1.00     2304     4946
## domain_pair_id159           0.26      0.03     0.20     0.33 1.00     5053     6162
## domain_pair_id16            0.04      0.01     0.01     0.06 1.00      865     2878
## domain_pair_id160           0.26      0.03     0.20     0.32 1.00     4378     6134
## domain_pair_id161           0.22      0.05     0.12     0.31 1.00     8376     6476
## domain_pair_id162           0.17      0.04     0.08     0.25 1.00     7692     6311
## domain_pair_id163           0.15      0.02     0.12     0.18 1.00     1137     2558
## domain_pair_id164           0.13      0.02     0.08     0.18 1.00     3129     5526
## domain_pair_id165           0.30      0.02     0.26     0.34 1.00     2340     4298
## domain_pair_id166           0.15      0.02     0.11     0.19 1.00     2637     5166
## domain_pair_id167           0.22      0.02     0.17     0.26 1.00     2392     5778
## domain_pair_id168           0.04      0.02    -0.01     0.07 1.00     1591     3914
## domain_pair_id169           0.64      0.02     0.60     0.69 1.00     2112     5622
## domain_pair_id17            0.09      0.01     0.07     0.11 1.00      724     2138
## domain_pair_id170           0.36      0.02     0.33     0.39 1.00     1306     3539
## domain_pair_id171           0.43      0.02     0.40     0.46 1.00     1198     2987
## domain_pair_id172           0.51      0.01     0.48     0.53 1.00      801     1639
## domain_pair_id173           0.46      0.01     0.43     0.49 1.00      886     2550
## domain_pair_id174           0.36      0.01     0.33     0.39 1.00      948     2409
## domain_pair_id175           0.49      0.08     0.33     0.66 1.00    13795     7044
## domain_pair_id176           0.39      0.02     0.36     0.42 1.00     1556     3841
## domain_pair_id177           0.45      0.02     0.41     0.48 1.00     2033     4622
## domain_pair_id178           0.45      0.02     0.42     0.49 1.00     1393     3445
## domain_pair_id179           0.29      0.02     0.25     0.32 1.00     1140     3223
## domain_pair_id18            0.06      0.02     0.03     0.11 1.00     2477     2861
## domain_pair_id180           0.35      0.03     0.29     0.41 1.00     5434     6077
## domain_pair_id181           0.46      0.02     0.43     0.50 1.00     2047     3605
## domain_pair_id182           0.44      0.02     0.40     0.48 1.00     2315     5023
## domain_pair_id183           0.32      0.02     0.28     0.35 1.00     1607     4294
## domain_pair_id184           0.91      0.04     0.82     0.97 1.00     3784     4766
## domain_pair_id185           0.53      0.02     0.49     0.57 1.00     2025     4548
## domain_pair_id186           0.32      0.01     0.29     0.34 1.00      687     1825
## domain_pair_id187           0.37      0.03     0.32     0.42 1.00     3433     4986
## domain_pair_id188           0.30      0.01     0.28     0.33 1.00      976     2779
## domain_pair_id189           0.52      0.02     0.48     0.56 1.00     1977     4313
## domain_pair_id19            0.07      0.02     0.03     0.10 1.00     1780     4851
## domain_pair_id2            -0.23      0.03    -0.28    -0.17 1.00     3698     5878
## domain_pair_id20            0.08      0.02     0.04     0.10 1.00     1262     3228
## domain_pair_id21            0.04      0.01     0.02     0.07 1.00      791     2680
## domain_pair_id22           -0.13      0.02    -0.16    -0.09 1.00     1728     4580
## domain_pair_id23           -0.04      0.02    -0.07    -0.01 1.00     1513     3453
## domain_pair_id24            0.35      0.08     0.20     0.50 1.00    14401     6775
## domain_pair_id25            0.06      0.02     0.03     0.09 1.00     1070     3090
## domain_pair_id26            0.04      0.03    -0.01     0.10 1.00     3406     4718
## domain_pair_id27            0.03      0.05    -0.09     0.11 1.00     6090     5804
## domain_pair_id28            0.01      0.03    -0.05     0.05 1.00     3530     5319
## domain_pair_id29            0.05      0.04    -0.05     0.11 1.00     5493     6641
## domain_pair_id3             0.07      0.02     0.04     0.11 1.00     1432     3466
## domain_pair_id30            0.05      0.03     0.00     0.10 1.00     3286     5639
## domain_pair_id31           -0.04      0.01    -0.06    -0.02 1.00      442      997
## domain_pair_id32            0.11      0.01     0.09     0.13 1.00      477      862
## domain_pair_id33            0.12      0.03     0.07     0.17 1.00     3705     5449
## domain_pair_id34            0.12      0.02     0.08     0.16 1.00     2393     3281
## domain_pair_id35            0.10      0.01     0.08     0.11 1.00      435      979
## domain_pair_id36            0.16      0.01     0.14     0.18 1.00      565     1847
## domain_pair_id37            0.24      0.01     0.22     0.27 1.00      768     1994
## domain_pair_id38            0.11      0.01     0.09     0.13 1.00      516     1188
## domain_pair_id39            0.11      0.01     0.09     0.13 1.00      429     1150
## domain_pair_id4             0.12      0.02     0.09     0.16 1.00     2560     6241
## domain_pair_id40            0.14      0.01     0.11     0.16 1.00      877     2645
## domain_pair_id41            0.47      0.05     0.37     0.57 1.00     3453     6436
## domain_pair_id42            0.05      0.01     0.02     0.07 1.00      708     1992
## domain_pair_id43           -0.02      0.03    -0.07     0.03 1.00     2671     5419
## domain_pair_id44            0.03      0.03    -0.03     0.08 1.00     4262     6092
## domain_pair_id45           -0.03      0.01    -0.05    -0.01 1.00      698     1524
## domain_pair_id46            0.11      0.01     0.08     0.14 1.00     1291     3000
## domain_pair_id47            0.21      0.04     0.13     0.28 1.00     5927     7819
## domain_pair_id48            0.47      0.01     0.45     0.50 1.00     1319     2974
## domain_pair_id49            0.13      0.01     0.11     0.16 1.00     1197     3218
## domain_pair_id5            -0.00      0.02    -0.05     0.04 1.00     2765     6438
## domain_pair_id50            0.17      0.01     0.15     0.20 1.00     1172     3433
## domain_pair_id51            0.11      0.02     0.08     0.15 1.00     1875     5405
## domain_pair_id52            0.08      0.04     0.01     0.17 1.00     5971     5611
## domain_pair_id53            0.14      0.03     0.09     0.19 1.00     3862     5540
## domain_pair_id54            0.19      0.03     0.14     0.24 1.00     4014     5554
## domain_pair_id55            0.07      0.01     0.05     0.09 1.00      672     1424
## domain_pair_id56            0.07      0.01     0.05     0.09 1.00      641     1871
##  [ reached getOption("max.print") -- omitted 236 rows ]
## 
## Further Distributional Parameters:
##    Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## nu    26.43      7.79    16.01    45.77 1.00     9023     7640
## 
## Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).




MCMC diagnostics






PPCs & LOO

Graphical posterior predictive checks


## 
## Computed from 10000 by 5149 log-likelihood matrix.
## 
##          Estimate    SE
## elpd_loo   4478.8  77.4
## p_loo       382.0  11.6
## looic     -8957.7 154.7
## ------
## MCSE of elpd_loo is NA.
## MCSE and ESS estimates assume MCMC draws (r_eff in [0.3, 2.4]).
## 
## Pareto k diagnostic values:
##                          Count Pct.    Min. ESS
## (-Inf, 0.7]   (good)     5139  99.8%   378     
##    (0.7, 1]   (bad)        10   0.2%   <NA>    
##    (1, Inf)   (very bad)    0   0.0%   <NA>    
## See help('pareto-k-diagnostic') for details.



Robustness Check

Behavioural Measure Categorization

We re-conducted the meta-analyses using a data set in which we treated behavioral measures as belonging to a single overarching “financial” domain (versus 4 domains: occupational, investment, gambling, and insurance). The overall estimate (0.17, 95% HDI [0.15,0.20]; k = 4,810) is comparable to the one reported in the main paper. Below are the correlation matrices of the results for this new categorization, as well as an additional figure comparing these re-calculated estimates to those reported in the matrices included the main paper




Attenuation

We corrected the 189 meta-analytic estimates of the intercorrelations reported in the main paper for attenuation due to measurement error by using the MASC reliability parameter estimates and Spearman’s formula.

\[r_{true} = \frac{r_{obs}}{\sqrt{rel_{1}*rel_{2}}}\]

Below are the matrices with the correlations corrected for attenuation (any correlation exceeding |1.00| was capped at |1.00|). We additionally provide a figure below, which contrasts the corrected and uncorrected intercorrelations for each measure pair faceted by category pair.

⚠️ As expected, the results show overall increased correlations between measures. We observe a correlation of rho = 0.95 between the corrected and uncorrected intercorrelations, which indicates that the overall ranking of associations is largely preserved. However, as shown in the figure, the magnitude of the correction is a function of the initial (low) reliability of measures, with those pairs that include measures with low reliability receiving stronger corrections, as it is the case, for example, for behavior-behavior correlations. As a consequence, reporting corrected intercorrelations may “inflate” intercorrelations for some measure categories, introducing a systematic bias and providing an incorrect view of the actual observed intercorrelations between measures. As a result, we opted to report the non-corrected values in the manuscript and provide information about corrections for attenuation in the supplementary materials.⚠️