SEMANTIC ACCOUNTS OF RISK PERCEPTION

A Data Scientific Approach

Zakir Hussain¹, Rui Mata¹, Dirk U. Wulff^{1,2} ¹ University of Basel ² Max Planck Institute for Human Development

WHY STUDY RISK PERCEPTION?

Slovic et al. (1982):

Improve methods for eliciting opinions about risk

/	R
ΠΠ	Π

Understand and anticipate public responses to hazards

Improve communication of risk information between the public, researchers, and policymakers

THE PSYCHOMETRIC PARADIGM

Risk Source = E.g. Car

PREDICTING RISK PERCEPTION

On a scale of -100 (safe) to +100 (risky) how risky would you rate the following?:

E.g. chess, dog, nuclear power

y *n* mean risk ratings

PREDICTING RISK PERCEPTION

ALTERNATIVE ACCOUNTS?

SEMANTIC ACCOUNTS!

Distributional Hypothesis: words with similar meanings tend to occur in similar contexts (Firth, 1957; Harris, 1954)

... formalisation ...

cat = [0.7, 1.1, -1.9, ..., 0.2]

SEMANTIC ACCOUNTS (BHATIA, 2019)

Baseline Model

Semantic Account

PSYCHOMETRIC

Fischhoff et al. (1978)

TEXT (Pre-trained) E.g. GloVe

ALTERNATIVE DATA?

E.g. Common Crawl

10¹¹ words

Text-Based Models

Free Associations

SWOW (De Deyne et al., 2019)

<u>10⁶ words</u>

Cue	Response
cat	fur
war	guns

WHICH MODELS?

Baseline Model

Semantic Accounts

PSYCHOMETRIC

TEXT (Pre-trained) GloVe

FREE ASSOCIATION swow

MORE VALIDATION DATA

MODEL COMPARISON

WHAT NEXT?

Application

INTERPRETABILITY (& HACKATHON)

Fischhoff et al. (1978):

C

INTERPRETABILITY (& HACKATHON)

WHAT NEXT?

Application

Interpretability

WHAT NEXT?

Interpretability

HACKATHON DATASET

WHAT NEXT?

Application

Interpretability

WHAT NEXT?

Application

Speech / Tweet / Article

RESULTS

APPLICATION

Following Ahir et al. (2022):

E.g. GDP Growth, Stock Market Volatility, Exchange Rate Volatility

The World Risk Index

Predicted Riskiness of e.g. Newspaper articles about "economy" by country

Predicted Riskiness of Language in British Parliament Speeches (1805–2004) using GloVe+SWOW (600D) -19 -20 WWII WWI Mean Riskiness -21 -22 -23 -24 Post-Napoleonic End of the Blitz -25 Depression?? 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Year Battle of waterloo

Predicted Riskiness of Language in British Parliament Speeches (1805–2004) using GloVe+SWOW (600D) -19 -20 WWII WWI Mean Riskiness -21 -22 -23 -24 Post-Napoleonic End of the Blitz -25 Depression?? 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Year Battle of waterloo