
Deep Learning:
A Primer for Psychologists

Christopher J. Urban∗ and Kathleen M. Gates

L.L. Thurstone Psychometric Laboratory in the
Department of Psychology and Neuroscience
University of North Carolina at Chapel Hill

Chapel Hill, NC 27599

September 5, 2019

Abstract
Deep learning has revolutionized predictive modeling in computer vi-

sion and in natural language processing but is not commonly applied
to psychology data. We provide an overview of machine learning and
deep learning for psychologists who have a working knowledge of linear
regression. We first help psychologists decide when to use deep learning by
discussing how machine learning and deep learning may be used to answer
both prediction-focused and causal-focused research questions. We then
provide an overview of machine learning and present a general recipe for
building machine learning algorithms. We define deep learning algorithms
as a subset of machine learning algorithms that can extract successively
more and more abstract representations of a data set by using many layers
of processing. Finally, we present three basic deep learning models that
generalize linear regression: The feedforward neural network, the convo-
lutional neural network, and the recurrent neural network. We describe
how these models may be applied to answer prediction-focused research
questions using common data types collected by psychologists.

Keywords: Psychology, deep learning, artificial neural networks,
machine learning, predictive modeling

1 Introduction
The amount of data available to psychologists in recent years has exploded. The
rise of the internet has enabled researchers to recruit large, diverse, and cheap
∗Correspondence to cjurban@live.unc.edu.
This preprint is intended for publication in an academic journal. Changes may be made

before publication, so it may not be reproduced or cited without the authors’ permission.

1



web-based samples (e.g., Buhrmester, Kwang, & Gosling, 2011; Gosling, Vazire,
Srivastava, & John, 2004) as well as to utilize the vast quantities of existing
web-based behavioral data (e.g., Golder & Macy, 2011; Gosling, Augustine,
Vazire, Holtzman, & Gaddis, 2011; Landers, Brusso, Cavanaugh, & Collmus,
2016; Yarkoni, 2010). Smartphones and wearable sensors give researchers un-
precedented opportunities to study experiential, behavioral, and physiological
processes at the individual level (e.g., Hamaker & Wichers, 2017; Miller, 2012;
Trull & Ebner-Priemer, 2014). Large, publicly available data sets (e.g., Insti-
tute for Quantitative Social Science Dataverse Network, dvn.iq.harvard.edu;
OpenfMRI project, www.openfmri.org) let researchers answer questions that
cannot be addressed in conventional lab-based settings (Yarkoni, 2012).

Statistics and artificial intelligence researchers have developed powerful,
flexible machine learning algorithms that can be applied to these big data sets.
Machine learning algorithms are typically used to predict unobserved data while
trying to avoid overfitting, or finding patterns in a data set that do not generalize
to other data sets (Hastie, Tibshirani, & Friedman, 2009). Psychologists and
other social scientists have employed machine learning algorithms in diverse
applications including:

• Making predictions associated with the diagnosis, prognosis, and treatment
of mental illness in clinical psychology and psychiatry (e.g., Dwyer, Falkai,
& Koutsouleris, 2018),

• predicting the societal impact of setting government policies in economics
(Kleinberg, Ludwig, Mullainathan, & Obermeyer, 2015),

• forecasting prison violence in sociology (Baćak & Kennedy, 2018), and

• diagnostic classification of individuals using functional magnetic resonance
imaging (fMRI) data in neuroscience (e.g., Pereira, Mitchell, & Botvinick,
2009).

This primer focuses on methods for prediction as well as on how predictive meth-
ods may complement other methods commonly used in psychology. Standard
approaches to studying psychology primarily focus on identifying the causal
mechanisms governing psychological phenomena (e.g., mediation analysis; tightly
controlled experimental design), placing increased emphasis on explaining and
decreased emphasis on accurately predicting some construct or outcome of inter-
est. While explanatory methods provide many useful insights and explicitly allow
for hypothesis testing, accurately predicting behaviors, diagnoses, outcomes, or
emotions can also advance psychological science. Ironically, explanatory models
that evidence excellent fit may not necessarily accurately predict the outcomes of
interest (Wu, Harris, & Mcauley, 2007), largely because of overfitting (Yarkoni
& Westfall, 2017). Research efforts that favor prediction over explanation can
be highly useful. For instance, prediction-focused machine learning methods
have been used to appropriately diagnose individuals (Bzdok, Engemann, Grisel,
Varoquaux, & Thirion, 2018) and detect risk for future suicide attempts (Walsh,
Ribeiro, & Franklin, 2017). In this way, focusing on prediction can help inform

2



intervention, prevention, and treatment endeavors in real-life scenarios. Addition-
ally, prediction-focused machine learning approaches can aid in the identification
of important variables and relationships to include in explanatory models.

This primer introduces concepts integral for understanding deep learning, a
machine learning paradigm that can be applied to the problems of prediction,
forecasting, and classification. Deep learning is the subfield of machine learning
concerned with extracting information from data in hierarchies of concepts
where complicated concepts are built out of simpler concepts. We visualize this
information extraction process in Figure 1 (Goodfellow, Bengio, & Courville,
2016), which contains a popular deep learning model schematic where each
row of circles represents a model layer and arrows represent information flow
through the model. The pictured model can classify objects in images. Each
individual image pixel first enters the model’s visible layer. The model’s hidden
layers identify successively more and more complicated concepts, like edges
or parts of objects. Finally, the model predicts the identity of the object in
the image. Psychologists often need to carefully select meaningful variables
to include in machine learning models to get accurate predictions (e.g., Jiang
et al., 2018). Deep learning models may avoid this pre-processing step by
automatically extracting their own (though usually not directly interpretable)
abstract representations of the data to use for making predictions.

Each layer in a deep learning model is just a simpler machine learning model.
The most popular foundational models used to build deep learning models are
called artificial neural networks (ANNs; LeCun, Bengio, & Hinton, 2015). In
fact, ANNs and deep learning are so interlinked that some machine learning
researchers consider ANNs to be another name for deep learning (e.g., Goodfellow
et al., 2016). ANNs were initially inspired by biological neural mechanisms
(McClelland, Rumelhart, & PDP Research Group, 1986; McCulloch & Pitts,
1943; Rosenblatt, 1958) and aim to consolidate and transfer information much
like in biological learning. Specifically, the ANN modeling framework mimics
animal (and human) neural processes in which neurons transfer information
via synapses in a feedforward fashion. From this perspective, ANNs may be
thought of as systems of nodes and edges in which each node (usually considered
an “artificial neuron”) produces an output that is used as input to another
node. This output-input relationship is depicted graphically with an arrow
(i.e., a directed edge) pointing from the output node to the input node. The
nodes and edges between subsequent layers in Figure 1 follow this standard
ANN representation. The earliest ANNs only had one hidden layer, but deep
learning implementations of ANNs have multiple hidden layers. Deep ANNs
have produced major breakthroughs in computer vision and natural language
processing (LeCun et al., 2015) as well as in accurate time series forecasting
(e.g., Gamboa, 2017; Karlsson, Loutfi, & Längkvist, 2014). Indeed, nearly all
successful deep learning approaches have ANNs at their core.

Computer scientists have used deep ANNs to accurately predict psychological
constructs of interest at unprecedented rates. For example, Suhara, Xu, and
Pentland (2017), Mikelsons, Smith, Mehrotra, and Musolesi (2017), and Taylor,
Jaques, Nosakhare, Sano, and Picard (2017) applied ANNs to forecast individuals’

3



Figure 1: Illustration of a deep learning model for classifying objects in images.
Reprinted from Deep Learning (p. 6.), by I. Goodfellow, Y. Bengio, and A.
Courville, 2016, Cambridge, MA: MIT Press. Copyright 2016 by Massachusetts
Institute of Technology. Reprinted with permission.

4



future moods using daily diary, wearable sensor, smartphone log, and weather
data. Huang, Cao, Yu, Wang, and Leow (2018) combined two kinds of ANNs to
predict bipolar individuals’ mood disturbances using keystroke and circadian
rhythm data. Aghaei, Dimiccoli, Canton Ferrer, and Radeva (2018) asked
participants to wear cameras, then used ANNs on the resulting image data to
classify individuals’ social interactions. In each case, ANNs outperformed the
best statistical methods available for prediction, such as logistic regression and
support vector machines.

Despite their state-of-the-art prediction accuracy, deep learning approaches
have not been widely adopted for predictive modeling in psychology. (One
notable exception is in neuroscience, where ANNs are often used to identify
brain-based disorders using brain imaging data; see Vieira, Pinaya, and Mechelli
(2017) for a review.) The benefits that deep learning approaches might confer
to psychology beyond those offered by simpler machine learning models are
therefore undetermined. Some barriers to applying deep learning for predictive
modeling in psychology might include:

1. A lack of clarity about common terms like deep learning and fundamental
concepts such as artificial neural networks (i.e., a knowledge barrier);

2. the complicated nature of building deep learning models in practice (i.e., a
complexity barrier); and

3. a lack of standard, easy-to-use deep learning software (i.e., an implementa-
tion barrier).

Due to space concerns, we address the knowledge barrier in this primer and
intend to address the complexity and implementation barriers in future work.

1.1 Objective
The objective of this primer is to familiarize psychologists with deep learning
concepts so that they can be better prepared to learn these methods (which are
largely developed in different disciplines) and to be critical consumers of articles
in the psychological sciences that use deep learning methods. This primer aims
to serve as an accessible reference for psychologists as they increasingly become
exposed to studies that use deep learning methods. We attack this goal via the
two-pronged approach described below.

First, we help psychologists determine when they should use deep learning.
Common research questions that can be addressed using machine learning are
presented. Cases in which deep learning models might offer benefits beyond
non-deep machine learning models are explored.

Second, we de-mystify deep learning by explaining common terms using both
equations and words. Machine learning algorithms are defined in a way that
emphasizes their commonalities with classical statistical methods. Deep learning
algorithms are defined as a particular subset of machine learning algorithms.
ANN models, the most successful models under the deep learning paradigm, are

5



presented as a generalization of the linear regression model. Specialized ANNs
that work well with image data (e.g., fMRI data) and with sequential data (e.g.,
daily diary data) are explained.

2 Deciding to Use Deep Learning
Deep learning promises many novel predictive modeling applications in psychol-
ogy. However, it is not suitable for all, or even the majority, of applications.
In this section, we aim to help psychologists determine which research ques-
tions deep learning is suited to answer. We begin by describing the kinds of
research questions psychologists usually wish to answer. Next, we describe the
subset of psychology research problems that can be addressed using machine
learning. We then describe the smaller subset of psychology research problems
on which deep learning algorithms may outperform simpler machine learning
algorithms. Finally, we anticipate some future directions for applying deep
learning to psychology data sets.

2.1 Common Kinds of Research Questions in Psychology
Psychologists aim to understand human behavior (Yarkoni & Westfall, 2017).
Most psychologists try to achieve this goal using statistical modeling, which
refers to the process of using mathematical tools to reach conclusions from
data (Breiman, 2001). Statistical modeling allows researchers to develop and
test theories by explaining the causal mechanisms that generated the observed
data, by predicting new, unobserved results, and by describing patterns in the
observed data (Shmueli, 2010). Most psychology research questions, therefore,
are amenable to statistical modeling - that is, they are usually questions about the
causal mechanisms giving rise to some behavioral phenomenon, about whether
some behavioral phenomenon can be accurately predicted, or about how some
behavioral phenomenon can be described. Due to space concerns, descriptive
models are not discussed further in this primer. Currently, most psychology
research questions seek to explain phenomena, so nearly all statistical models in
psychology are used for causal explanation (Shmueli, 2010; Yarkoni & Westfall,
2017). Machine learning and deep learning algorithms, on the other hand,
are usually thought of as statistical models for prediction (Breiman, 2001).
Many psychologists may feel resistant to setting aside causal models in favor of
predictive models. However, causal explanation and prediction are not at odds.
In fact, explanatory modeling and predictive modeling are complementary tools
that can be used separately or together to answer important psychology research
questions. We discuss this point further in the following section.

6



2.2 Which Psychology Research Questions Are Suited to
Machine Learning?

Machine learning techniques for predictive modeling can be used directly by
themselves to answer prediction-focused research questions or indirectly to help
answer causal explanation-focused research questions. We first discuss using
machine learning techniques to directly predict outcomes of interest, which is
how machine learning may offer the biggest benefits to the field of psychology
(Yarkoni & Westfall, 2017).

2.2.1 Using machine learning to directly answer prediction-focused
research questions

Although causal explanation is the dominant focus in most theoretical psychology
research areas, prediction is often the primary goal in many applied psychology
research areas such as clinical psychology, educational psychology, industrial-
organizational psychology, and human factors psychology. For example, clinical
psychologists are often interested in the diagnosis, prognosis, and treatment
of individuals with mental illness. We can frame this interest as a prediction
problem: Given some observed clinical (and maybe biological) data, can we
accurately predict an individual’s diagnosis, prognosis, and optimal treatment?

Even in theoretical psychology (e.g., social, cognitive, personality), many
traditional research questions are most naturally addressed using predictive
modeling or may be reformulated and addressed via predictive analyses. Yarkoni
and Westfall (2017) describe two published examples of prediction-focused
research questions in personality psychology and in cognitive psychology. First,
in personality psychology, Yarkoni and Westfall note that the question of whether
a person’s online behaviors can be used to make inferences about their personality
has often been addressed using explanatory modeling techniques (i.e., by testing
for statistically significant associations between personality dimensions and
online behaviors; e.g., Back et al., 2010; Gosling et al., 2011; Yarkoni, 2010).
However, information about how well specific online behaviors predict specific
personality traits is most easily obtained using predictive modeling (Kosinski,
Stillwell, & Graepel, 2013). Second, in cognitive psychology, Yarkoni and Westfall
describe how Rissman, Greely, and Wagner (2010) addressed the question of
whether the human brain encodes traces of the true events it witnesses by
using participants’ fMRI activation patterns to predict whether participants had
or had not previously seen images of faces. These are just two of the many
examples of how theoretical psychology research questions might be addressed
using predictive modeling.

The major goal of a predictive research agenda is to accurately predict
outcomes of interest using new, unobserved data. Historically, prediction-focused
psychology research questions like those described above have been inadequately
addressed using explanatory statistical modeling techniques including p-value
testing and effect size measurement, which try to make conclusions about a
hypothetical population using a sample of individuals (Dwyer et al., 2018) but do

7



not explicitly aim to make accurate predictions with new data. Machine learning
approaches to prediction improve on classical explanatory modeling approaches
in two major ways. First and most importantly, unlike classical explanatory
models, machine learning techniques explicitly try to avoid finding patterns in
a data set that do not generalize to other data sets - that is, machine learning
techniques try to avoid overfitting. p-hacking (Simmons, Nelson, & Simonsohn,
2011) or data-contingent analysis (Gelman & Loken, 2013), which refers to
selecting the explanatory model that gives the best results on a particular data
set, may be thought of as overfitting because the model it selects may not produce
good results on new, unobserved data sets. p-hacking is widely thought to be
a major contributor to psychology’s replication crisis (Simmons et al., 2011).
Machine learning techniques may therefore directly combat the replication crisis
by minimizing the overfitting issues associated with p-hacking. Machine learning
approaches to combatting overfitting are discussed in the Learning Models
that Generalize section.

Second, machine learning algorithms often predict outcomes more accurately
than classical explanatory models, especially when modeling complicated data
sets. One possible reason for this is that many machine learning algorithms
implicitly model large, low-order (e.g., two-way or three-way) interactions and
other non-linearities that need to be explicitly specified in classical explanatory
models, enabling these algorithms to obtain high predictive accuracy when the
true causal relationships underlying the data are non-linear (Yarkoni & Westfall,
2017). For example, the random forest (Breiman, 2001) and support vector
machine (Boser, Guyon, & Vapnik, 1992) algorithms often make accurate predic-
tions by implicitly capturing non-linear associations between the independent and
dependent variables that would need to be explicitly specified by the researcher
in a linear regression model.

Another possible contributor to many machine learning algorithms’ superior
accuracy is their ability to leverage information from large numbers of possibly
multicollinear variables to make predictions. For example, linear regression model
parameters (see Linear regression as a machine learning algorithm) are
unstable when the independent variables are multicollinear, often leading to
inaccurate model predictions. Linear regression model parameters cannot even
be uniquely estimated using high-dimensional data sets, or data sets with
more variables than observations. However, extensions of linear regression
called ridge regression (Kennard & Hoerl, 1970) and lasso (Tibshirani, 1996)
may produce stable, accurate predictions with multicollinear and even high-
dimensional data sets by emphasizing the importance of the most informative
independent variables while making predictions. In sum, machine learning
may benefit psychologists with prediction-focused research questions because
many machine learning approaches outperform classical explanatory approaches
by improving replicability and by increasing predictive accuracy, especially in
complicated data sets with non-linear dependencies between a large number of
variables.

8



2.2.2 Using machine learning to indirectly answer causal explanation-
focused research questions

Machine learning techniques may be used in several ways to help build statistical
models for causal explanation in psychology. The first and most straightforward
way is to apply a machine learning algorithm to different sets of independent
variables and to compute the algorithm’s predictive accuracy on each set. Variable
sets with high predictive utility for the outcome of interest may then be used to
build causal models. In some cases this will be similar to the hierarchical linear
regression (Cohen, Cohen, West, & Aiken, 2003) technique commonly used by
psychologists, in which sets of independent variables are successively added to
a linear regression model to determine whether the new variable sets explain a
statistically significant amount of variance in the dependent variable.

Second, machine learning algorithms may be used to estimate causal effects.
For example, consider a simple randomized controlled trial in which one group
of patients with depression have been treated with cognitive-behavioral therapy
(CBT) and another group has received no treatment. We are interested in the
effects of CBT on depression symptoms. Assume that we have measured a set
of independent variables for each patient. We can build one machine learning
model to predict depression symptoms using the independent variables measured
for patients in the control group. We can then build a separate machine learning
model to predict depression symptoms for patients in the treatment group. If
we apply both models to the independent variables measured for a particular
patient, the difference between the outputs of these models is just the estimated
causal effect of treatment for that patient. Athey (2018) provides an overview
of how machine learning algorithms are being applied to solve causal inference
problems.

Finally, machine learning algorithms can be used to uncover possible causal
structure in a data set. For example, neuroscientists often use Bayesian network
analysis to show the existence and direction of possible causal relationships
between brain regions (Henry & Gates, 2017; Mumford & Ramsey, 2014).
Additionally, automated strategies for building structural equation models are
often used to identify possible causal relationships in psychological data (e.g.,
Gates & Molenaar, 2012; Marcoulides, Ing, & Hoyle, 2014).

2.3 Which Psychology Research Questions Are Suited to
Deep Learning?

Deep learning is not suited for all predictive modeling applications in psychology.
Deep learning algorithms often outperform simpler machine learning algorithms
when most or all of the following hold (Goodfellow et al., 2016; LeCun et al.,
2015):

1. There are many small, non-linear associations between variables in the
data set or the variables are not easily coded in a meaningful, theoretically-
relevant way;

9



2. a large number of observations are available; and

3. the observations are images or sequences.

We discuss each of these conditions in turn.
First, deep learning algorithms excel at discovering intricate relationships

between large numbers of variables (LeCun et al., 2015). As described in the
introduction, deep learning models are usually composed of many independent,
modular parts called layers that can be stacked together in different arrangements.
These layers extract progressively more and more abstract representations of the
independent variables and can capitalize on many small associations between
these variables to predict the outcome of interest. Many phenomena studied by
psychologists are likely influenced by a large number of weak causal factors that
interact in complicated ways - that is, "everything correlates with everything else"
(Meehl, 1990). These phenomena may not be simple enough to be approximated
by human-understandable models like linear regression (Yarkoni & Westfall,
2017). Deep learning models, which are less readily interpretable than linear
regression models, may work very well in these cases (although see Montavon,
Samek, and Müller (2017) for a tutorial overview of methods for interpreting
deep learning models).

Additionally, although psychologists usually need to think carefully about in-
cluding meaningful, theoretically-relevant variables in models to obtain accurate,
generalizable predictions (called feature engineering in machine learning; Jiang
et al., 2018), deep learning algorithms mostly avoid this pre-processing step by
extracting their own (though usually not directly interpretable) representations
of the independent variables to make predictions. For example, the psychological
analysis of text data (Iliev, Dehghani, & Sagi, 2015), image data, and video data
(Barto, Bird, Hamilton, & Fink, 2017) is usually labor-intensive, requiring human
coders to look through the data and manually identify important information
in each observation to use for making predictions. It might not even be clear
what information will lead to the most accurate predictions. In psychological
text analysis, for example, it is not always clear which features in a body of
text will be the most useful for predicting outcomes like the author’s mood or
personality characteristics (Iliev et al., 2015). A deep learning algorithm might
prove useful in this case by extracting representations of the raw text data in an
automated fashion and using these representations to accurately predict mood
or personality characteristics.

Second, deep learning algorithms can take advantage of large data sets to
increase their predictive accuracy beyond the accuracy attainable with simpler
machine learning algorithms (Goodfellow et al., 2016; LeCun et al., 2015). For
example, many deep learning algorithms that performed worse than or compa-
rably to simpler machine learning algorithms at modeling image or text data
in the 1980s outperform other algorithms using the larger data sets available
today (Goodfellow et al., 2016). We expect that as society becomes increasingly
digitized, psychologists will have greater access to large data sets that will be
difficult to effectively analyze without using deep learning. Already, psychol-
ogists can extract behavioral data sets with tens or hundreds of thousands of

10



observations from internet sources like social media websites, blogs, and online
forums using web scraping (Landers et al., 2016). Cell phones and wearable
sensors may produce behavioral data sets with large numbers of observations
(e.g., Hamaker & Wichers, 2017). Genomics and clinical data sets are often large
and may be helpful for predicting psychological outcomes (e.g., Plomin & Davis,
2009). Deep learning algorithms may be able to capitalize on these huge data
sets to predict psychological outcomes with unprecedented accuracy.

Finally, deep learning algorithms often obtain higher predictive accuracy
than other machine learning algorithms when the observations are images or
sequences. This is because specialized deep learning models have been developed
that take advantage of the structure of images and sequences to efficiently
process observations. Specifically, models called convolutional neural networks
(CNNs) have led to breakthroughs in processing image, video, and speech data,
while models called recurrent neural networks (RNNs) have advanced predictive
modeling of text, speech, and time series data (LeCun et al., 2015). CNNs and
RNNs are discussed further in the Overview of Artificial Neural Network
Models section.

In sum, deep learning may provide the most benefit to psychologists when used
to predict outcomes of interest in large data sets with many correlated variables
or with image or sequence observations. Although such data sets are not common
in mainstream psychological research, they are readily available through web-
based and clinical sources. As described in the introduction, computer scientists
have already achieved promising results using deep learning to predict interesting
psychological outcomes. In many cases, deep learning models outperformed
simpler machine learning models, which implies that the true causal structure
underlying these data sets consisted of weakly correlated interactions between
large numbers of variables. We anticipate that combining many data types
including survey, computer and smartphone log, social media, image and video,
biometric (e.g., wearable sensor, fMRI), genomic, and Gloabl Positioning System
(GPS) data will produce large data sets that deep learning models can utilize to
accurately predict important psychological outcomes.

3 Machine Learning Fundamentals
Deep learning algorithms are a subset of machine learning algorithms. Under-
standing deep learning therefore requires some familiarity with basic machine
learning concepts. In this section, we provide an overview of these foundational
machine learning concepts. Readers who are familiar with machine learning
basics should skip to the Deep Learning Fundamentals section. However,
even these readers may benefit from reading A Recipe for Building Machine
Learning Algorithms, which presents a general recipe for building machine
learning algorithms.

11



3.1 Variable Terminology in Machine Learning
Machine learning researchers use a number of different terms to refer to different
kinds of variables, which we translate for psychologists here.

In psychology and in machine learning, a data set usually consists of a number
of variables measured for a set of objects. For example, we might measure the
variables age, employment status, and height for a set of people and collect this
information in a data set. A data set is typically formatted as a data matrix
where each variable is represented by a column and each object is represented by
a row. For example, a data set in which p different variables have been measured
for N different objects can be formatted as follows:

X =

N
ob

se
rv

at
io

ns




p variables︷ ︸︸ ︷
x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p
...

...
. . .

...
xN,1 xN,2 · · · xN,p

 . (1)

Data sets that are formatted as in equation 1 are sometimes called tabular data
sets. In this primer, we use bold capital letters to denote matrices, bold lowercase
letters to denote vectors, and non-bold, italic, lowercase letters to denote scalars
such as elements of matrices or vectors. We assume that all measured values are
real numbers. In equation 1, for example, we assume that every matrix element
is a real number. Each row of X, denoted xi,:, is called an observation or an
example.

Both psychology and machine learning researchers often make a distinction
between dependent variables and independent variables. The independent vari-
ables are usually explored to investigate their possible statistical relationships
with the dependent variables. In psychology and machine learning, there is
typically only one dependent variable, and while there can be more than one,
we focus on models with one dependent variable to draw comparison with usual
formulations of linear regression. Statistical relationships can be expressed in
equation form as

y =

deterministic part︷ ︸︸ ︷
f(X) +

random part︷︸︸︷
e , (2)

where f(·) is a deterministic function, X a N × p data matrix, y an N × 1
vector of observations for the dependent variable, and e an N × 1 vector of
random error terms. Intuitively, equation 2 means that we are assuming that
the dependent variables y partially depend on some independent variables we
have measured (i.e., X) and partially depend on some random information we
have not measured (i.e., e). In linear regression, for example, we assume that
the dependent variables can be modeled as a weighted sum of the independent
variables plus some random error. Linear regression is described in the Linear
regression as a machine learning algorithm section.

Machine learning researchers interchangeably call independent variables fea-
tures, predictors, or input variables and interchangeably call dependent variables

12



responses or output variables. Categorical dependent variables with two cate-
gories (e.g., "True" or "False") are called targets. Categorical dependent variables
with more than two categories (e.g., "Red", "Green", or "Blue") are called la-
bels. A categorical variable with k categories that is expressed as a vector of
k dummy variables where the ith dummy variable is equal to 1 and all other
dummy variables are equal to 0 is called one-hot or one-of-k encoded. We write
observations of one-hot variables as [0, . . . , 0, 1, 0, . . . , 0]>, where (·)> denotes
the vector or matrix transpose. The matrix of observations of the independent
variables X is called the design matrix or the feature matrix. The number of
variables p in X is called the dimensionality of the design matrix. If the number
of variables p is much larger than the number of observations N , denoted p� N ,
the design matrix is considered high-dimensional. For detailed discussions of
variable terminology and dimensionality in machine learning, see Bishop (2007),
Hastie et al. (2009), or Murphy (2012).

In closing this section, we note that it is not always helpful to think of a data
set as a single N × p design matrix. This is true for many data sets containing
potentially fascinating psychological insights, such as image or sequence data
sets. For example, imagine we have a data set containing N different grayscale
(i.e., "black-and-white") images. In digital form, all grayscale images are two-
dimensional arrays made up of colored squares called pixels where each pixel’s
color is determined by a number. We can therefore think of a grayscale image as
a matrix of numbers where the (j, k)th number describes the color of the (j, k)th

pixel in the image. Since each observation is a matrix, our data set is no longer a
single matrix - rather, it is a collection of matrices. If each image in our data set
is the same shape, say r × c, we can think of our data set as an N × r × c array
or tensor X where Xi,:,: is a matrix representing the ith image in the data set
and xi,j,k is a number representing the color of the (j, k)th pixel in this image.
In Figure 2, we visualize a data set containing four different randomly generated
4× 4 grayscale images. We refrain from discussing image and sequence data sets
further until the Overview of Artificial Neural Network Models section,
where we discuss deep learning models for processing these data sets.

3.2 A Recipe for Building Machine Learning Algorithms
Nearly all machine learning algorithms can be put together using a recipe with
four parts: A data set, a model, a cost function, and an optimization procedure
(Goodfellow et al., 2016). This recipe is also used to build many classical
statistical methods employed by psychologists including linear regression, factor
analysis, and structural equation modeling. We discuss this recipe below.

1. The data set. Machine learning is concerned with extracting patterns
from data. All machine learning algorithms, therefore, require at least
one data set from which patterns can be extracted. Data sets are usually
formatted as as in equation 1.

2. The model. Choosing a model means that we need to specify the deter-
ministic part and the random part of the statistical relationship between

13



Figure 2: Example of an image data set containing four 4× 4 random grayscale
images formatted as a 4× 4× 4 tensor.

148

150

69

123

70

149

77

95

83

62

40

69

141

105

103

133

50

97

132

66

93

64

119

35

132

101

74

48

66

52

125

120

97

119

60

39

111

99

111

121

50

125

98

89

116

123

104

105

139

44

108

55

141

107

35

66

84

68

127

86

100

35

108

97
X =

X1,:,:

X2,:,:

X3,:,:

X4,:,:

j

i

k

14



our output variables and our input variables. Many machine learning algo-
rithms focus only on the deterministic part and do not make assumptions
about the random part. This represents a departure from typical statistical
methods used by psychologists such as the normal error linear regression
model, which makes numerous assumptions about the random error terms
(Kutner, Nachtsheim, Neter, & Li, 2004). In machine learning, the model
is a parameterized family of functions

{f̂(·;θ) : θ ∈ Θ}, (3)

where θ is a particular vector of parameters, Θ is the set of all possible
parameter vectors called the parameter space, and f̂(·;θ) is a function
parameterized by θ whose input is usually the data set X. Equation 3 is
read as "the set of all f̂(·;θ) such that θ is an element of Θ". Intuitively, set
described in equation 3 provides a possible pool of functions parameterized
by θ, and the goal of the machine learning algorithm is to search the
parameter space for the most appropriate parametrization such that the
behavior of the function explains the observed data well - much like the
goal of linear regression.

Parameters are values that affect the behavior of a function. For
example, consider the simple linear regression function f̂(x; b) = bx with
parameter vector θ = [b]. b affects the scale of the output: When b is a
large number, any change in x leads to a large change in f̂(x); when b is
near 0, any change in x leads to a small change in f̂(x). In equation 3, if
we choose a family of functions with a fixed number of parameters (i.e., the
parameter vector θ is finite-dimensional), our model is parametric. If we
choose a family of functions with a number of parameters that changes with
the size of the data set (i.e., the parameter vector θ is infinite-dimensional),
our model is non-parametric.

In prediction-focused applications, also called supervised learning,
we usually model the output variables as a function of the input variables:

y = f̂(X;θ) + e. (4)

In words, equation 4 says that y is modeled as a function of X parame-
terized by θ plus a random error term e. Supervised learning algorithms
try to "learn" a good approximation f̂(·;θ) to the function f(·) in equa-
tion 2 so that the output observations y can be accurately predicted given
the input observations X. Accuracy for supervised learning algorithms is
usually based on how "close" the predicted output values f̂(X;θ) are to
the observed output values y. In this sense, the outputs y "supervise" the
algorithm as it learns to approximate f(·). Supervised learning is called
regression if the output variables are continuous and is called classifica-
tion if the output variables are categorical (Bishop, 2007; Hastie et al.,
2009; Murphy, 2012). Classification where the output variable has two
categories is called binary classification. The linear regression and artificial

15



neural network algorithms discussed in this paper are supervised learning
algorithms.

3. The cost function. The cost function is a method for evaluating how
accurately the model is modeling the data set. Cost functions are inter-
changeably called objective functions, loss functions, or error functions
(Goodfellow et al., 2016). Cost functions must take in the observed output
values y and the predicted values f̂(X;θ), then output a real number. If
the model is accurately modeling the data set, the cost function will output
small number. If the model is not accurately modeling the data set, the
cost function will output a large number. Psychology researchers might
already be familiar with cost functions in the linear regression context,
where we usually wish to find the line or higher-dimensional surface that
best fits that observations by minimizing the squared distances between
the surface and the observations. In this case, we try to minimize the mean
squared error cost function, which is defined in the Linear regression as
a machine learning algorithm section.

4. The optimization procedure. We often wish to make the cost function
as small as possible. Minimizing the cost function ensures that our model
is modeling the data set accurately. The process of minimizing the cost
function is called optimization, learning, training, or fitting. During opti-
mization, we think of the input and output values as fixed and we think of
the model parameters θ as knobs we can turn to make the cost function
output smaller or larger values. In general, it is computationally infeasible
(i.e., it would take a very long time) to turn these knobs manually. Instead,
we use an efficient optimization procedure to do so for us. While we do
not review optimization for artificial neural networks in this paper (see
Nielsen (2015) for an accessible introduction), it might help readers to
keep in mind that cost functions and optimization are used for artificial
neural networks much like they are in more familiar analytic frameworks
such as linear regression, and different ones can be used for any approach
presented here.

3.2.1 Linear regression as a machine learning algorithm

The recipe for machine learning algorithms provided above is fairly abstract. We
now present linear regression as a machine learning algorithm to make the recipe
more concrete.

Linear regression starts with a data set consisting of a set of N observations
of p input variables as well as a set of N observations of one output variable. We
choose to model each output observation as a weighted sum of the corresponding
input observations plus an intercept:

yi = b0 + b1xi,1 + b2xi,2 + · · ·+ bpxi,p + ei, i = 1, . . . , N, (5)

where yi is the ith observed value of the output variable, xi,1, xi,2, . . . , xi,p are
the ith observed values of the p input variables, b1, b2, . . . , bp are the weight

16



parameters, b0 is the intercept, and ei is the error or randomness in yi that is
unaccounted for by the predictors. The intercept b0 is the predicted output value
when all of the input values are equal to zero. In machine learning, intercepts
are called biases.

It is often useful to write equation 5 concisely using matrices. To do so, we
collect our output observations in an N ×p matrix as in equation 1, then append
a column of ones, resulting in an N × (p+ 1) design matrix X. Appending a
column of ones helps us include the intercept in our matrix equation. We also
collect our output observations in an N × 1 vector y. Equation 5 can then be
written as

y = Xb + e, (6)

where b is a (p+ 1)× 1 vector of weight parameters including the intercept
and e is an N × 1 vector of errors. Note that equation 6 clearly models the
output observations as a function of the input observations as in equation 4.
Additionally, we can clearly identify the deterministic and random parts that
align with equation 2.

The mean squared error (MSE) cost function is typically used to evaluate
linear regression model accuracy:

MSE =
1

N

N∑
i=1

(
yi − (b0 + b1xi,1 + b2xi,2 + · · ·+ bpxi,p)

)2
. (7)

Equation 7 is the average of the squared differences between the observed output
values yi and the predicted output values ŷi. MSE is a cost function because
it always outputs a (positive) real number. This number should be close to
zero when the observed and predicted output values are very similar and should
be large when the observed and predicted output values are very different.
Equation 7 is expressed in matrix form as

MSE =
1

N
‖y −Xb‖22. (8)

In equation 8, ‖ · ‖2 denotes the `2 norm or the Euclidean norm of a vector,
which computes the square root of the summation of the squared elements of

the vector (i.e., for all N × 1 vectors of real numbers x, ‖x‖2 =
√∑N

i=1 x
2
i ).

1

Finally, we optimize our linear regression model by finding the weight param-
eters that make our cost function as small as possible. In linear regression, this
can be solved directly using an equation, but note that in many applications
different parameters will need to be searched. We can achieve the lowest MSE by
setting the gradient (i.e., the multi-variable derivative) of the MSE with respect

1The `2 norm can be thought of as the length or the size of the vector. Note that this value
is squared in equation 8, thus negating the square root’s impact on the value. The `2 norm is
just an efficient way to write the squared sum of the differences between the observed output
values and the predicted output values.

17



to the weight parameters to zero and solving for the weight parameters:

∇b
1

N
‖y −Xb‖22 = 0 =⇒ (9)

b̂ = (X>X)−1X>y, (10)

where ∇b denotes the gradient with respect to the weight parameters and (·)−1
denotes the matrix inverse. Psychologists may recognize equation 10, which lets
us directly compute the weight parameters b̂ that minimize the MSE.

3.3 Learning Models That Generalize
The recipe described in the A Recipe for Building Machine Learning
Algorithms section emphasizes that machine learning algorithms and many
classical explanatory methods are built using the same basic ingredients. Machine
learning algorithms and explanatory statistical methods mostly differ in how
they justify model-building.

Explanatory statistical methods are primarily concerned with inference -
that is, they try to make conclusions about the larger population of objects
from which the data set was sampled. This is usually achieved by estimating
either p-values for or confidence intervals around the model parameters θ. The
overarching goal is to find the true population parameters that generated the
data set and to interpret these parameters.

Machine learning algorithms are primarily concerned with generalization -
that is, machine learning algorithms try to build models that perform well with
new, previously unseen data sets (e.g., Bishop, 2007; Goodfellow et al., 2016;
Hastie et al., 2009; Murphy, 2012). Although explanatory statistical methods
build models intended to generalize to a population, machine learning formally
tests the extent to which models generalize. This is typically achieved by dividing
the data set so that some observations are placed in a training set and some
observations are placed in a test set. We train our model using only the training
set.2 The final value of the cost function on the training set, called the training
error, tells us how accurately our learning algorithm was able to model the
training set. What we are really interested in, however, is the generalization
error, which is the expected value of the cost function on a new input observation
(Hastie et al., 2009). We can estimate the generalization error by using our
trained model to compute the value of the cost function on the test set. We call
the estimated generalization error the test error.

Two issues may arise after computing the training error and the test error:
Underfitting or overfitting. A model suffers from underfitting when the training
error is too large. This means that the model did not predict well even on the
data used to learn the model. A model suffers from overfitting when the difference

2We split the data into a training set and a test set to mimic direct replication, or the
process of replicating findings from one data set on a second, independent data set. Fitting
the model using only the training set allows us to check whether our results replicate using the
new, unseen test set data.

18



between the training error and the test error is too large. This indicates that the
model does not generalize to data outside of the training set. We can control
how likely a model is to overfit or to underfit by changing the model’s capacity,
which refers to a model’s ability to approximate a wide variety of functions
(Goodfellow et al., 2016). We can change a model’s capacity by altering its
hypothesis space H, which is the set of functions a model is allowed to choose
from when it is trying to approximate a particular function. We can alter a
model’s hypothesis space by either changing the size of its hypothesis space (i.e.,
changing the model’s representational capacity) or by making it prefer certain
regions of its hypothesis space (i.e., regularizing the model). Changing a model’s
representational capacity corresponds to allowing the model to choose from a
different number of possible functions, while regularizing a model corresponds to
influencing the specific functions the model tends to select. These concepts are
demonstrated concretely in the following sections.

3.3.1 Changing a model’s representational capacity

Representational capacity is an important concept in deep learning. Deep
learning models like ANNs usually have very high representational capacities -
that is, they can approximate a wide variety of relationships between the input
and output variables. There are many ways to change the representational
capacity of a deep learning model, some of which are discussed throughout the
Deep Learning Fundamentals section. In the following paragraph, we give
a simple example of changing the representational capacity of a linear regression
model to demonstrate this concept.

To illustrate how altering a model’s representational capacity impacts under-
fitting and overfitting, consider a linear regression algorithm with N observations
of one input x and one output y. If we include a bias term, our model is
yi = b0 + b1xi + ei, i = 1, . . . , N , our parameter vector is θ = [b0, b1]

>, and
our cost function is MSE = 1

N

∑N
i=1

(
yi − (b0 + b1xi)

)2. Our hypothesis space
is H = {f(x) = b0 + b1x : b0, b1 ∈ R}, the set of all two-dimensional lines
with real-valued parameters. Our model can therefore approximate any two-
dimensional line imaginable. If the data set was generated by a quadratic
function like f(x) = x2, however, this model will be unable to approximate the
data generating function and will demonstrate underfitting (e.g., Figure 3a).
We can increase our model’s representational capacity by changing the model
to yi = b0 + b1xi + b2x

2
i + ei, which lets our model approximate any quadratic

polynomial with real-valued parameters. This quadratic model will demonstrate
good fit when true function underlying the data set is quadratic (e.g., Figure 3b).

In fact, we may continue adding polynomial terms to this linear regression
model as long as we like. Although linear regression models with many polynomial
terms are capable of approximating quadratic functions, they are also capable
of approximating many other functions that fit the data set even if they were
not the data-generating function (Goodfellow et al., 2016). These models are
unlikely to choose the quadratic solution in practice and usually demonstrate
overfitting. In Figure 3c, a linear regression model with 12 polynomial terms

19



demonstrates overfitting when the data-generating function is quadratic.

3.3.2 Regularizing a model

Regularization is essential when building deep learning models. ANNs and other
deep learning models with high representational capacities can easily overfit
a data set. Luckily, there are a large number of techniques for regularizing
deep learning models to combat their tendency to overfit. We do not discuss
regularization for deep learning due to space concerns, although see Goodfellow
et al. (2016) for an overview. We demonstrate regularization for linear regression
in the following paragraph and note that regularization for deep learning models
is conceptually similar.

Consider the linear regression model with 12 polynomial terms that demon-
strated overfitting in Figure 3c. To reduce overfitting, we can regularize our
model by adding a penalty term called a regularizer to the cost function:

MSE +

regularizer︷ ︸︸ ︷
λ‖θ‖22 , λ ≥ 0, (11)

where λ is a positive real number called a regularization parameter. Modify-
ing a cost function by adding a regularizer that includes the `2 norm of the
model parameters is called weight decay and is often used in deep learning
algorithms. Since our optimization procedure wants to minimize this modified
cost function, it will prefer parameters whose `2 norm is small. Higher values
of the regularization parameter λ will make this preference stronger - that is,
our optimization procedure will tend to choose smaller parameter values. In
Figure 3d, regularization eliminates overfitting but reintroduces underfitting.

3.3.3 Hyperparameter tuning

Many machine learning algorithms have settings called hyperparameters that
affect the behavior of the model but cannot be chosen by the algorithm itself
during training. In our linear regression example, the number of polynomial terms
included in our model and the value of the λ term were both hyperparameters.
Our algorithm could not choose these values because increasing the polynomial
degree and decreasing the value of λ would let the model approximate the
observed data better and better ad infinitum. This, however, would result in
overfitting. Instead, we choose hyperparameters by taking some observations
from the training set and placing them in a validation set. We train many models
with different hyperparameter settings on the training set, then evaluate each
of their performances on the validation set. The model whose hyperparameter
settings give the best performance on the validation set is evaluated on the test
set. Selecting hyperparameter values this way is called hyperparameter tuning
or hyperparameter optimization. Deep learning models usually have a large
number of hyperparameters (e.g., the number of layers in the model; the kinds of
layers used; the ways the layers are connected together). For this reason, when
building deep learning models, researchers usually only test a few reasonable

20



Figure 3: Illustration of the effects of altering the capacity of the linear
regression algorithm on model fit.

Underfitting

x

y

(a) Simple linear regression model.

Good fit

x

y

(b) Linear regression model with a
quadratic term.

Overfitting

x

y

(c) Linear regression model with
polynomial terms up to order 12.

Underfitting

x

y

(d) Linear regression model with poly-
nomial terms up to order 12 and an `2

penalty.

21



Full data set

Training set Test set

Training set Validation set Test set

Training-test split:
No hyperparameters

Training-validation split:
Hyperparameters,

big data set

Figure 4: Schematic illustrating the validation set approach to hyperparameter
tuning.

hyperparameter values until their models achieve adequate accuracy on a given
data set. Additionally, the validation set approach works best with big data sets.
In small data sets, a k-fold cross-validation approach is used for hyperparameter
tuning (Yarkoni & Westfall, 2017). We illustrate hyperparameter tuning with a
validation set in Figure 4.

4 Deep Learning Fundamentals
Deep learning has gotten a lot of hype in recent years (Marcus, 2018). One
popular modeling approach for deep learning, artificial neural networks (ANNs),
has a much longer history dating to the mid-twentieth century (McCulloch
& Pitts, 1943; Rosenblatt, 1958). Both deep and non-deep ANNs have been
hyped since their inception (Ripley, 2005). All of this hype has obscured what
deep learning and ANNs really are. In this section, we clearly explain deep
learning and ANNs for the psychologist who has a working familiarity with linear
regression. We focus on three core ANN models that may be useful for predictive
modeling with psychological data: Feedforward neural networks, convolutional
neural networks, and recurrent neural networks.

4.1 Deep Learning Models and Terminology
What exactly makes a machine learning model a deep learning model? A defining
feature of most deep learning models is that they map the input observations
through a sequence of functions where each function in the sequence is called a
layer. In more technical terms, nearly all deep learning models are compositions

22



of functions. Function composition is the application of one function to the
output of another function. Formally, function composition is written as

(g ◦ f)(x) = g
(
f(x)

)
, (12)

where (g ◦ f) is read as "g composed with f" or as "g of f". Intuitively, when we
compose g with f(x), we are feeding some input value x to the function f , which
spits out a value f(x). In turn, f(x) is fed to the function g, which spits out a
final value g(f(x)). In Figure 5a, we visualize this process with a schematic in
which circles represent values and arrows represent functions.

In general, functions may be multivariate and vector-valued, which means
they may take vectors as inputs and may produce vectors as outputs, respectively.
Compositions of two multivariate vector-valued functions are written

(g ◦ f)(x) = g
(
f(x)

)
(13)

=

[
g1

([
f1(x), . . . , fp1

(x)
]>)

, . . . , gp2

([
f1(x), . . . , fp1

(x)
]>)]>

,

(14)

where x is a p× 1 vector, f(x) is a p1 × 1 vector, and g
(
f(x)

)
is a p2 × 1 vector.

Note that p, p1, and p2 (i.e., the number of elements in x, f(x), and g
(
f(x)

)
,

respectively) are not necessarily equal. We again visualize this process with a
schematic in Figure 5b. We omit function arguments in schematic diagrams for
multivariate vector-valued functions to avoid clutter.

Compositions may include more than just two functions. For example, we
write a composition of three multivariate vector-valued functions as

(g ◦ f (2) ◦ f (1))(x) = g
(
f (2)

(
f (1)(x)

))
, (15)

where x is a p×1 vector, f (1)(x) is a p1×1 vector, f (2)
(
f (1)(x)

)
is a p2×1 vector,

and g
(
f (2)

(
f (1)(x)

))
is a p3 × 1 vector. In this primer, we use parenthesized

numbers in superscripts to denote ordered sequences of objects where object
(·)(i−1) comes before object (·)(i). We may in fact compose as many functions as
we wish. Compositions of q + 1 multivariate vector-valued functions are written

(g ◦ f (q) ◦ · · · ◦ f (2) ◦ f (1))(x) = g

(
f (q)

(
. . . f (2)

(
f (1)(x)

)))
, (16)

where x is a p × 1 vector, f (i)
(
. . . f (1)(x)

)
is a pi × 1 vector for i = 1, . . . , q,

and g
(
. . . f (1)(x)

)
is a pq+1 × 1 vector. Nearly all deep learning models are

compositions of many multivariate vector-valued functions as in equation 16,
where each function has parameters we can optimize to help the model accurately
predict the outcome variable.

Equation 16 helps us define important terminology for describing deep learning
models. In deep learning models, each function composed together to build the

23



model is called a layer. f (1) is called the first layer, f (2) is called the second layer,
and so on. x is called the input layer. Functions f (1) through f (q) are collectively
called hidden layers. The final function g is called the output layer. The elements
of each vector-valued layer, denoted f

(i)
1 , . . . , f

(i)
pi for the ith layer, are called

nodes, artificial neurons, or units. The total number of hidden layers q is called
the model depth. Models with one hidden layer are called shallow. Models with
more than one hidden layer are called deep. The number of elements in the ith
layer, denoted pi, is called the width of layer i. The process in equation 16 is
visualized with annotated layers in Figure 5c. The intuition behind choosing a
model with many hidden layers is that the deep learning algorithm may decide
how to use each hidden layer to best approximate the relationship between the
input and output variables (Goodfellow et al., 2016).

4.2 Overview of Artificial Neural Network Models
The definition of a deep learning model as a composition of functions is quite
broad. In principle, we could compose together any arbitrary functions and call
the resulting composition a deep learning model. However, choosing completely
arbitrary functions to build deep learning models would likely produce models
that are very hard to train or models that do not perform well. Artificial neural
networks (ANNs) are one popular solution to this problem. ANNs are a broad
class of non-linear statistical models that can be composed together in many
layers. They have been extremely successful under the deep learning paradigm
because they can be efficiently trained (using the back-propagation algorithm;
Werbos, 1974) and because of their potentially high predictive accuracy.

In the following sections, we present some ANNs that may be useful for
predictive modeling in psychology. We first describe feedforward neural networks
(FNNs; see Single-layer feedforward neural networks and Deep feedfor-
ward neural networks). Like linear regression, FNNs are useful for predicting
outcomes of interest using tabular data sets (i.e., the standard N ×p data matrix
X from equation 1). Next, we discuss convolutional neural networks (CNNs; see
Convolutional neural networks), which are useful for predicting outcomes
with image data (e.g., fMRI data). We note that CNNs are sometimes useful for
other data types such as text data and other sequential data (Goodfellow et al.,
2016), although we do not discuss these applications in this primer. Finally, we
discuss recurrent neural networks (RNNs; see Recurrent neural networks),
which work especially well for predicting outcomes of interest using sequen-
tial data (e.g., daily diary data; physiological trace data). We compare linear
regression, FNNs, CNNs, and RNNs in Table 1.

4.2.1 Single-layer feedforward neural networks

The single-layer feedforward neural network (FNN), also called the single-layer
perceptron, is the simplest ANN model. The single-layer FNN only has one hidden
layer and is therefore a shallow model of the form g

(
f(x)

)
as in equation 13.

24



Figure 5: Schematic representations of compositions of functions.

x f(x) g(f(x))

f g

(a) Composition of two scalar-valued functions.

x1

x2

f1

f2

g1

g2

...
...

...

xp fp1
gp2

f g

(b) Composition of two multivariate vector-
valued functions.

x1

x2

f
(1)
1

f
(1)
2

· · ·

· · ·

f
(q)
1

f
(q)
2

g1

g2

...
...

...
...

xp f
(1)
p1

· · · f
(q)
pq

gpq+1

f (1) f (2) f (q) g

Input
layer

Hidden
layer 1

Hidden
layer q

Output
layer

(c) Composition of q + 1 multivariate vector-valued functions.

25



Linear
regression

Feedforward
neural networks

Convolutional
neural networks

Recurrent
neural networks

Data types Tabular Tabular Images;
some sequences Sequences

Works in
high-dim.a
setting

No Yes Yes Yes

Predicts
continuous
outcomes

Yes Yes Yes Yes

Predicts
categoricalb
outcomes

No Yes Yes Yes

aHigh-dimensional (e.g., for tabular data, p � N).
bIncludes binary outcomes.

Table 1: A comparison of typical use cases for the linear regression model and
three basic artificial neural network models.

It is a supervised learning model that can be used either for regression or for
classification.

Just like in linear regression, the single-layer FNN starts with N observations
of p input variables collected in anN×p design matrix X as well asN observations
of one output variable collected in an N × 1 vector y. To simplify notation, we
drop all i subscripts indicating that we are working with the ith input from X
and the ith output from y. We now write xi,: as x and write each element of x
as xj for j = 1, . . . , p. yi is simply written as y. This simplification is justified
because single-layer FNNs and other ANNs are usually trained by feeding one
randomly selected observation to the model at a time. The particular observation
we choose has no impact on how the model is specified.

The single-layer FNN aims to to produce a p1× 1 hidden layer representation
h of each p× 1 input observation x that can subsequently be used to predict the
corresponding output observation y. To produce this hidden layer representation,
the single-layer FNN first computes p1 different weighted sums of the input
values xj plus an intercept term:

sk = bhxk,0 +

p∑
j=1

bhxk,jxj , k = 1, . . . , p1, (17)

where p1 is the number of hidden layer nodes (as defined above). Equation 17 is
simply the linear regression model in equation 5 repeated once for each hidden
layer node (i.e., p1 times) with different weight parameters for each node. Note

26



that the weight parameters have (·)hx superscripts to indicate that multiplying
by these weights gets us "to" the hidden layer h "from" the input layer x. We
use this "to-from" notation throughout this primer to unambiguously specify the
weight parameters associated with each ANN layer, which is especially helpful
when describing ANNs with many layers (Lipton, Berkowitz, & Elkan, 2015).

Next, the single-layer FNN applies a non-linear function σ(·) to each sum to
compute the hidden layer or the derived predictor nodes:

hk = σ(sk), k = 1, . . . , p1. (18)

These hidden layer nodes are elements of the p1×1 hidden layer representation h,
which corresponds to f(x) from the g

(
f(x)

)
model described in equation 13. The

non-linear function σ(·) is called an activation function and enables the single-
layer FNN to model outcomes that vary non-linearly with the input variables.
Note that the same activation function is applied to all of the hidden layer nodes.
The hidden layer activation function for single-layer FNNs was traditionally the
sigmoid function

σ(z) =
1

1 + e−z
, (19)

although modern single-layer FNNs mostly use the rectified linear unit or ReLU
(Glorot, Bordes, & Bengio, 2011; Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009;
Nair & Hinton, 2010)

σ(z) = max(0, z). (20)

The sigmoid activation function is visualized in Figure 6a and the ReLU activation
function is visualized in Figure 6b. Activation functions are discussed further
later in this section.

The single-layer FNN can now use the hidden layer representation h to
predict the output observation y. To do so, it computes a weighted sum of
the hidden layer values plus an intercept term, then applies another non-linear
activation function g(·) to this sum:

y = g(byh0 +

p1∑
k=1

byhk hk) + e, (21)

where (·)yh superscripts indicate weight parameters to the output node from
the hidden layer nodes and e is a random error term. The single-layer FNN is
visualized in Figure 7. ŷ, the predicted output value in the final node, is typically
fed to a cost function to evaluate the model’s predictive accuracy. Note that
intercepts are included in the schematic by multiplying the intercepts by new
nodes x0 and h0 that are both equal to one. Psychologists may be familiar with
this procedure from structural equation modeling, where it is used to include
intercepts in path diagrams, often as triangles (Bollen, 1989).

Choosing the final activation function g(·) determines whether our single-layer
FNN will perform regression or classification. In regression, we wish to predict
an output value y that may be any real number. In this case, we choose g(·) to
be the identity function

σ(z) = z. (22)

27



Figure 6: Common activation functions used in artificial neural network models.

−3 −2 −1 1 2 3

−1

1

z

σ(z)

(a) A graph of the sigmoid activation function.

−3 −2 −1 1 2 3

−1

1

z

σ(z)

(b) A graph of the rectified linear unit activation function.

−3 −2 −1 1 2 3

−1

1

z

σ(z)

(c) A graph of the identity activation function.

28



x0 = 1

x1

x2

s1

s2

h0 = 1

h1

h2

...
...

...

xp sp1 hp1

∑
hk ŷ

bhxk,j
weights σ

activation
function

byhk
weights

g
activation
function

Input
layer

Weighted
sums

Hidden
layer

Weighted
sum

Output
layer

Figure 7: Schematic representation of the single-layer feedforward neural
network.

Figure 6c shows that the identity function simply takes in any real number z
and outputs the same real number z. In binary classification, we wish to predict
an output value y that may be either zero (corresponding to the first output
category) or one (corresponding to the second output category). Here, we choose
g(·) to be the sigmoid function (equation 19). Figure 6a demonstrates that the
sigmoid function takes in any real number z and outputs a number between zero
and one. The number output by the sigmoid activation function represents the
probability that the input observation belongs to the second output category (i.e.,
the category represented by y = 1). Finally, in classification with k categories,
we wish to predict an output vector y that is one-hot. In this case, we choose
g(·) to be the softmax function

σ(z)i =
ezi∑k
j=1 e

zj
, i = 1, . . . , k, (23)

where z is a k× 1 vector. The softmax activation function takes in a k× 1 vector
of real values z and outputs a k × 1 vector of probabilities whose ith element
represents the probability that the input observation belongs to category i.

Similarly to linear regression, the single-layer FNN can be expressed concisely
using matrices:

y = g
(
(byh)>h + byh0

)
+ e, (24)

h = σ(Bhxx + bhx
0 ), (24a)

29



where

byh

p1×1
=


byh1
byh2
...
byhp1

 , h
p1×1

=


h1
h2
...
hp1

 , (24b–c)

Bhx

p1×p
=


bhx1,1 bhx1,2 · · · bhx1,p
bhx2,1 bhx2,2 · · · bhx2,p
...

...
. . .

...
bhxp1,1 bhxp1,2 · · · bhxp1,p

 , x
p×1

=


x1
x2
...
xp

 , bhx
0

p1×1
=


(bhx

0 )1
(bhx

0 )2
...

(bhx
0 )p1

 ,
(24d–f)

and the activation functions σ(·) and g(·) are applied to vectors element-wise.
As described above, the p1 × 1 hidden layer vector h can be thought of as a
representation of the original input observation x that the single-layer FNN
has learned to help it predict y. h is in fact a vector of p1 latent variables, or
unobserved variables that summarize the information contained in the original
observation. The concept of a latent variable may be familiar to psychologists
from factor analysis and from structural equation modeling, which aim to explain
the relationships between a set of observed variables in terms of a number of
unobserved latent constructs.

Previously, we mentioned that ANNs can be thought of as generalizations of
linear regression. We use basic algebra to show that the single-layer FNN can
be reduced to the linear regression model in Appendix A, where we also briefly
discuss the problem of interpreting single-layer FNNs and other ANN models.

4.2.2 Deep feedforward neural networks

Single-layer FNNs are not deep learning models because they only have one
hidden layer. Deep feedforward neural networks (FNNs), also called multi-layer
perceptrons, extend single-layer FNNs by including more than one hidden layer.
Using many hidden layers may allow deep FNNs to model complicated, non-
linear relationships between the input and output variables more efficiently
than single-layer FNNs, often making deep FNNs a better modeling choice than
single-layer FNNs for large, complicated data sets.

The deep FNN equations are very similar to the single-layer FNN equations.
For the interested reader, we describe these equations in full detail in Appendix B.
We also visualize the deep FNN in Figure 8. Notice that intercept terms are
omitted from the schematic and that layer-wise summation and applying an
activation function are represented using a single arrow. ANNs are typically
represented this way in the deep learning literature. It is also common to omit
intercept terms in path diagrams for structural equation models (Bollen, 1989).

It is not always clear when to use deep FNNs instead of single-layer FNNs in
practice. In theory, both single-layer and deep FNNs can model very complicated
relationships between the input and output variables. This is stated formally in

30



x1

x2

h
(1)
1

h
(1)
2

· · ·

· · ·

h
(q)
1

h
(q)
2

ŷ

...
...

...

xp h
(1)
p1

· · · h
(q)
pq

σ(1) σ(2) σ(q−1)

g

Input
layer

Hidden
layer 1

Hidden
layer q

Output
layer

Figure 8: Schematic representation of the deep feedforward neural network.

the universal approximation theorem, which holds that both single-layer and deep
FNNs are capable of approximating arbitrarily complicated continuous functions,
given some mild assumptions3 about the hidden layer activation functions (e.g.,
Csáji, 2001). This capability may be useful for problems in psychology, where
the true functional relationship f(·) between the input x and the output y may
be very complicated. In practice, however, single-layer FNNs may require a huge
numbers of hidden layer nodes to learn the true f(·). Deep FNNs with many
hidden layers may need fewer nodes at each layer to learn the true f(·) and may
therefore take less time to train than single-layer FNNs (Goodfellow et al., 2016).
We recommend treating the number of hidden layers as a hyperparameter: Start
with one hidden layer, then increase the number of hidden layers a few times
and check whether predictive accuracy improves on a validation set.

4.2.3 Convolutional neural networks

Convolutional neural networks (CNNs) are specialized ANNs for processing image
data. Like FNNs, CNNs can be used for regression or classification. CNNs
process images very efficiently by assuming that local information is important in
each observation. With images, this assumption is almost always reasonable. For
example, consider the image in Figure 1. Imagine that a small, square-shaped
patch of pixels is randomly selected from this image. We could look at this patch
and state whether or not it contains the edge of an object without needing to look
at any other parts of the image - that is, only local information is important for

3There are a several proofs of the universal approximation theorem for both single-layer
and deep FNNs. Most of these proofs assume that the hidden layer activation functions are
non-constant (i.e., they are not always equal to a single, constant value), bounded (i.e., they
don’t shoot off to positive or negative infinity), and continuous (i.e., their graphs do not have
any gaps). More recent proofs (e.g., Lu, Pu, Wang, Hu, & Wang, 2017; Sonoda & Murata,
2017) do not require the activation functions to be bounded.

31



identifying edges of objects. This is how CNNs work: They break up images into
overlapping, squared-shaped patches of pixels, then summarize the information
contained in each patch. Deep CNNs perform this summarization step at each
layer, building more and more complicated concepts (e.g., parts of objects like
faces or shirts) by summarizing simpler concepts (e.g., edges of objects). We
only discuss single-layer CNNs in this primer, although extending single-layer
CNNs to deep CNNs is straightforward and is briefly described at the end of
this section.

It is helpful to think about single-layer CNNs as specialized single-layer FNNs.
Recall that single-layer FNNs aim to produce a hidden layer representation h
from each input observation x that can subsequently be used to predict the
corresponding output observation y. Equation 24a describes how to produce
h in a single-layer FNN: Multiply x by a weight matrix Bhx, add an intercept
vector bhx, then apply an element-wise activation function σ(·). Single-layer
CNNs also aim to produce a hidden layer representation of each input image
that can then be used to predict the corresponding output observation. However,
single-layer CNNs replace multiplying the input image by a weight matrix Bhx

with an operation called two-dimensional discrete convolution. Intuitively, two-
dimensional discrete convolution breaks up the input image into overlapping
square-shaped patches, then summarizes the information contained in each patch
using a single number. We describe this process with equations in the following
paragraphs.

In Variable Terminology in Machine Learning, we described how to
think of a data set containing N grayscale images as a three-dimensional tensor
X (visualized in Figure 2). Recall that the ith image Xi,:,: is a two-dimensional
matrix of numbers, and each number determines the color of a single pixel in
the image. Imagine that each image is the same shape, say rx × cx, and that we
also have an outcome value yi associated with image i for all i = 1, . . . , N . As
before, we drop all i subscripts - for example, we write Xi,:,: as X and yi as y.

The single-layer CNN aims to produce a hidden layer representation H of
the input image X that can then be used to predict y. To produce H, the
single-layer CNN first applies two-dimensional discrete convolution to X to
produce an intermediate representation S. This is written in equation form as

sj,k = (X ∗Bhx)(j, k) =

j−rb∑
m=j−1

k−cb∑
n=k−1

xm,nb
hx
j−m,k−n,

j = 1, . . . , rx + rb − 1, k = 1, . . . , cx + cb − 1,

(25)

where ∗ is called the convolution operator, X is the rx × cx input image, Bhx

is an rb × cb weight matrix called the kernel, and sj,k are elements of the
(rx + rb − 1) × (cx + cb − 1) matrix S called the convolution of X and Bhx.
Equation 25 looks complicated but is fairly intuitive to understand. "X ∗Bhx"
is read as "X convolved with Bhx". Convolving the input image X with the
kernel (i.e., weight matrix) Bhx produces a new matrix S, much like multiplying
two matrices produces a new matrix. The kernel Bhx is just a small weight

32



x1,1

x2,1

x3,1

x4,1

x1,2

x2,2

x3,2

x4,2

x1,3

x2,3

x3,3

x4,3

x1,4

x2,4

x3,4

x4,4

bhx1,1

bhx2,1

bhx1,2

bhx2,2

x1,1b
hx
1,1 + x1,2b

hx
1,2+

x2,1b
hx
2,1 + x2,2b

hx
2,2

x2,1b
hx
2,1 + x2,2b

hx
2,2+

x3,1b
hx
3,1 + x3,2b

hx
3,2

x3,1b
hx
3,1 + x3,2b

hx
3,2+

x4,1b
hx
4,1 + x4,2b

hx
4,2

x1,2b
hx
1,2 + x1,3b

hx
1,3+

x2,2b
hx
2,2 + x2,3b

hx
2,3

x2,2b
hx
2,2 + x2,3b

hx
2,3+

x3,2b
hx
3,2 + x3,3b

hx
3,3

x3,2b
hx
3,2 + x3,3b

hx
3,3+

x4,2b
hx
4,2 + x4,3b

hx
4,3

x1,3b
hx
1,3 + x1,4b

hx
1,4+

x2,3b
hx
2,3 + x2,4b

hx
2,4

x2,3b
hx
2,3 + x2,4b

hx
2,4+

x3,3b
hx
3,3 + x3,4b

hx
3,4

x3,3b
hx
3,3 + x3,4b

hx
3,4+

x4,3b
hx
4,3 + x4,4b

hx
4,4

X

Bhx

S

∗ =

Figure 9: Example of two-dimensional discrete valid convolution with a 4× 4
image input and a 2× 2 kernel.

matrix that "slides" around on the input image. As it "slides", it performs
element-wise multiplication with the patch of image it is currently on, then sums
the result into a single output value. This "sliding" process is how single-layer
CNNs use two-dimensional discrete convolution to summarize information from
small, overlapping patches on the input image. We visualize two-dimensional
discrete convolution with a 4× 4 image and a 2× 2 kernel in Figure 9. Note that
our figure only visualizes the output values sj,k where the kernel fits completely
inside the image, called the valid convolution.

We previously mentioned that single-layer CNNs replace multiplying the
input image X by a weight matrix Bhx with convolving X and Bhx. However,
after performing convolution, single-layer CNNs do exactly what single-layer
FNNs do to produce the hidden layer representation H: They add an intercept

33



to each sj,k, then apply an activation function σ(·):

hj,k = σ(bhx0 + sj,k),

j = 1, . . . , rx + rb − 1, k = 1, . . . , cx + cb − 1,
(26)

where hj,k are elements of the resulting (rx + rk− 1)× (cx + ck− 1) hidden layer
representation H. As with single-layer FNNs, choosing a non-linear activation
function helps single-layer CNNs model outcomes y that vary non-linearly with
the input images X.

We can now use the hidden layer H to predict the outcome y. Just like the
single-layer FNN, the single-layer CNN models the outcome as a weighted sum
of the hidden layer nodes, then applies a final activation function g(·):

y = g
(
byh0 +

rhch∑
j=1

byhj hj
)
+ e, (27)

h = vec(H), (27a)

where vec(·), the vectorization operation, converts the rh × ch hidden layer H
into an rhch × 1 vector h4, hj are elements of h, and e is a random error term.
As with FNNs, choosing the activation function g(·) determines whether the
single-layer CNN will perform regression or classification.

Deep CNNs have revolutionized predictive modeling using image data as well
as video, speech, and audio data (LeCun et al., 2015). Basic deep CNNs can be
constructed from single-layer CNNs just like deep FNNs can be constructed from
single-layer FNNs: Simply add many hidden layers, each feeding in to the next.
Additionally, modifying CNNs to process non-image data is straightforward.
However, the most successful deep CNNs used in practical applications can be
very complicated (e.g., Krizhevsky, Sutskever, & Hinton, 2012). Goodfellow et al.
(2016) describe some modifications that may improve CNN predictive accuracy
as well as tips for building CNNs in practice.

4.2.4 Recurrent neural networks

Just like CNNs are specialized for processing images, recurrent neural networks
(RNNs) are specialized for processing sequential data where the order of the
observations is meaningful. Just like FNNs and CNNs, RNNs can be used for
regression or classification.

Before discussing RNNs, we discuss how to describe a data set where each
observation is a sequence. A sequence of length T is an ordered set of T
observations of p different variables. Data sets usually contain many sequences.
For example, daily diary data sets usually include N different individuals, each
of whom is asked p questions each day for Ti days, i = 1, . . . , N . We write

4The vectorization operation stacks the columns of H on top of each other. That is,
vec(H) = h = [h1,1, . . . , hrh,1, h1,1, . . . , hrh,2, . . . , h1,ch , . . . , hrh,ch ]

>. Vectorizing H just
makes it easier to sum over all of its elements.

34



length Ti sequences as x
(1)
i ,x

(2)
i , . . . ,x

(Ti)
i , where x

(t)
i is the p×1 vector of values

observed for individual i at time point t. Note that the lengths of the sequences
in our data set may be different for each individual, but the number of variables
is the same for all individuals. As usual, we drop all i subscripts from equations
- for example, we write x

(1)
i ,x

(2)
i , . . . ,x

(Ti)
i as x(1),x(2), . . . ,x(T ).

We can now formulate the simple RNN model. Consider an input sequence
x(1),x(2), . . . ,x(T ) and a corresponding output sequence y(1), y(2), . . . , y(T ). At
each time point t, the simple RNN aims to learn a p1 × 1 hidden layer repre-
sentation h(t) of the p × 1 input vector x(t) that can then be used to predict
the outcome y(t). Each hidden layer should also utilize information from all
previous time steps when making predictions. Intuitively, the simple RNN is
just a single-layer FNN with loops carrying information forward through time.
The simple RNN begins by modeling the first output node as a function of the
first input nodes just like the single-layer FNN:

y(1) = g(byh0 +

p1∑
k=1

byhk h
(1)
k ) + e(1), (28)

h
(1)
k = σ(bhxk,0 +

p∑
j=1

bhxk,jx
(1)
j ), k = 1, . . . , p1, (28a)

where h(1)k is the kth hidden layer node and e(1) is the error at time point 1.
Equations 28 and 28a describe the usual single-layer FNN (equations 17, 18,
and 21) applied to the input x(1) at time point 1.

At subsequent time steps, however, the simple RNN models the current
output node as a function of the current input nodes as well as the previous
hidden layer nodes:

y(t) = g(byh0 +

p1∑
k=1

byhk h
(t)
k ) + e(t), t = 2, . . . , T, (29)

h
(t)
k = σ(bhxk,0 +

p∑
j=1

bhxk,jx
(t)
j +

p1∑
k=1

bhhk h
(t−1)
k ), k = 1, . . . , p1, t = 2, . . . , T, (29a)

where (·)hh superscripts indicate recurrent weight parameters connecting hidden
layer nodes at subsequent time steps and and e(t) is the error at time point t.
Equations 29 and 29a are called update equations because they describe how
to update the hidden state h(t) and the predicted output y(t) at each time
point t given the current input x(t) and the previous hidden state h(t−1). Any
mathematical equation that starts with initial values and defines all future values
as functions of previous values is called a recurrence relation. Recurrent neural
networks are called "recurrent" because their update equations are a recurrence
relation. Notice that the model re-uses the same weight parameters at each
time step. Re-using weight parameters this way is called parameter sharing and
allows RNNs to be trained with and applied to sequences of varying lengths.

35



The simple RNN update equations may be written concisely with matrices:

y(t) = g
(
(byh)>h(t) + byh0

)
+ e(t), t = 1, . . . , T, (30)

h(t) = σ(Bhxx(t) + Bhhh(t−1) + bhx
0 ), t = 1, . . . , T, (30a)

where h(t) is the p1 × 1 hidden layer vector at time point t, Bhx is the p1 × p
matrix of weight parameters to the hidden layer nodes from the input nodes,
bhx
0 is a p1 × 1 intercept vector applied to the hidden layer nodes, Bhh is an
p1 × p1 matrix of recurrent weight parameters, byh is an p1 × 1 vector of weight
parameters to the output node from the hidden layer nodes, byh0 is an intercept
to the output nodes from the hidden layer nodes, and the initial hidden state
nodes h(0) are defined to be 0 (a p1 × 1 vector of zeros). Just like equations 29
and 29a, equations 30 and 30a are a recurrence relation - that is, all output
values are functions of previous values.

To better understand the simple RNN, it is helpful to write the network in
equation form without using recurrence. This is called unfolding the network.
The simple RNN is unfolded as

y(1) = g((byh)>σ(Bhxx(1) + bhx
0 ) + byh0 ) + e(1),

y(2) = g
(
(byh)>σ

(
Bhxx(2) + Bhhσ(Bhxx(1) + bhx

0 ) + bhx
0

)
+ byh0

)
+ e(2),

...

y(T ) = g

(
(byh)>σ

(
Bhxx(T ) + . . .+ Bhhσ

(
Bhxx(2) + Bhhσ(Bhxx(1) + bhx

0 )

+ bhx
0

)
. . .
)
+ byh0

)
+ e(T ).

(31)

Equations 31 are simply equation 30a substituted into equation 30 and written
down explicitly for all time steps. Schematic representations of equations 30, 30a,
and 31 are presented in Figure 10. The schematic on the left hand side of Figure 10
represents equations 30 and 30a as a single-layer FNN with a loop passing
information from one time step to the next. The schematic on the right hand
side of Figure 11 represents the unfolded simple RNN in equations 31 as T single-
layer FNNs chained together. Both schematics are equivalent representations of
the same simple RNN.

In general, the input and output sequence need not have the same length.
If our input sequence has length one (i.e., x(1)) and our output sequence has
length T (e.g., y(1), y(2), . . . , y(T )), our RNN has a one-to-many architecture
(Figure 11a). An ANN’s architecture refers to the number of nodes in the
network and the ways that these nodes are connected (i.e., which nodes are
connected as well as which weight structures and activation functions are used;
Goodfellow et al., 2016). To understand when we might use an RNN with a one-
to-many architecture, consider a daily diary study in which we collect information
about each individual’s moods and experiences once per day for several months.

36



h(t)

x(t)

ŷ(t)

= h(1)

x(1)

ŷ(1)

h(2)

x(2)

ŷ(2)

h(3)

x(3)

ŷ(3)

h(4)

x(4)

ŷ(4)

. . . h(T )

x(T )

ŷ(T )

Figure 10: Schematic representation of the single-layer recurrent neural network
both as a loop and as an unfolded loop.

If we wish to use an individual’s mood and experiences on a given day to predict
their mood each day for the next three days, we would use a one-to-many
architecture. If our input sequence has length T (i.e., x(1),x(2), . . . ,x(T )) and
our output sequence has length one (i.e., y(1)), our recurrent neural network has
a many-to-one architecture (Figure 11b). If we wish to predict whether or not
an individual will experience a depressive episode on a particular day using their
past week of moods and experiences, we would use a many-to-one architecture.
Finally, if both have length greater than one, our RNN has a many-to-many
architecture (Figure 11c). If we wish to predict an individual’s moods for the
next three days using their past week of moods and experiences, we would use a
many-to-many architecture.

RNNs are appealing in theory because they use information from the past
to predict future output values. In practice, however, simple RNNs struggle to
use information from very far in the past (Bengio, Simard, & Frasconi, 1994;
Doya, 1993; Hochreiter, 1991; Pascanu, Mikolov, & Bengio, 2013). This may
not be a problem if we only expect recent information to influence the current
output value. For example, imagine collecting information about individual’s
moods and experiences twice per day. We might expect a person’s mood early
in the day to strongly influence their mood later in the day, but might expect
their mood yesterday or earlier to only weakly influence their nighttime mood.
A simple RNN might be well-suited to to modeling this scenario. However,
if an individual experienced an extremely negative life event one month ago
that we expect to strongly impact their current mood, a simple RNN might
struggle to use information from so far in the past to predict a current output
value. To overcome this problem with simple RNNs, specialized models called
gated recurrent neural networks were designed to learn long-term dependencies.
They are currently the most effective ANNs for modeling sequences in practice
(Goodfellow et al., 2016). Lipton et al. (2015) provide an accessible overview of
the most popular gated RNNs for practical applications.

37



Figure 11: Schematic representations of several common recurrent neural
network architectures.

h(1)

x(1)

ŷ(1)

h(2)

ŷ(2)

h(3)

ŷ(3)

h(4)

ŷ(4)

. . . h(T )

ŷ(T )

(a) An example of the one-to-many recurrent neural network archi-
tecture.

h(1)

x(1)

h(2)

x(2)

h(3)

x(3)

h(4)

x(4)

. . . h(T )

x(T )

ŷ(T )

(b) An example of the many-to-one recurrent neural network archi-
tecture.

h(1)

x(1)

h(2)

x(2)

h(3)

x(3)

ŷ(3)

h(4)

ŷ(4)

. . . h(T )

ŷ(T )

(c) An example of the many-to-many recurrent neural network
architecture.

38



5 Conclusion
Machine learning is poised to have a major impact both on predictive modeling
and on causal modeling in psychology. Deep learning is a successful machine
learning paradigm that has revolutionized the psychology-related fields of com-
puter vision and natural language processing. We described how deep learning
algorithms excel at modeling large data sets with small, non-linear associations
between variables and with observations that are images or sequences. We
anticipate that as psychologists begin to collect large data sets that combine
information about participants from many sources including computers, smart-
phones, and wearable sensors, deep learning algorithms will outshine simpler
machine learning algorithms at predicting important psychological outcomes.

In this primer, we introduced the feedforward neural network, the convolu-
tional neural network, and the recurrent neural network as generalizations of
linear regression. These models (or modifications of these models) are funda-
mental building blocks of advanced artificial neural networks used in large-scale
scientific and industrial applications. We did not describe these state-of-the-art
model architectures because deep learning research is progressing too quickly
for such descriptions to be practically useful for long. Rather, we aimed to help
psychologists gain some fluency in machine learning and deep learning basics.
We hope that this fluency will be a first step toward enabling psychologists
to draw from the machine learning literature in the same way that they have
historically drawn from the statistics literature. In future work, we will discuss
how to build deep learning models and will provide software implementations to
help psychologists utilize deep learning to answer prediction-focused research
questions.

On a final note, we wish to emphasize that machine learning and deep learning
are not panaceas. In causal modeling, the randomized controlled trial is still a
powerful experimental design for understanding the causal mechanisms that give
rise to psychological phenomena (e.g., Lilienfeld, McKay, & Hollon, 2018). In
predictive modeling, artificial neural networks may give worse results than simpler
models like linear regression in data sets with large, linear associations between
a few variables. Deep learning models that "automatically" learn complicated
relationships between independent and dependent variables are not a license for
psychologists to feed their data into an algorithm and hope for the best. Rather,
valid psychological research requires attention to the same things it always
has: Identifying which research hypotheses might be interesting and useful to
investigate; translating abstract theoretical constructs into meaningful observable
measurements; designing studies and collecting data sets ethically; choosing
appropriate classical or modern statistical modeling techniques; and many more.
Machine learning and deep learning combined with excellent research practices
represent a key step toward helping psychologists accurately and reliably predict
human behaviors, cognitions, and emotions.

39



6 Acknowledgements
We are very grateful to Van Rynald T. Liceralde and to Jeffrey A. Greene for
their detailed feedback and suggestions.

References
Aghaei, M., Dimiccoli, M., Canton Ferrer, C., & Radeva, P. (2018). Towards social

pattern characterization in egocentric photo-streams. Computer Vision
and Image Understanding, 171, 104–117. doi:10.1016/j.cviu.2018.05.001

Athey, S. (2018). The impact of machine learning on economics. (January).
Retrieved from https://www.nber.org/chapters/c14009.pdf

Baćak, V. & Kennedy, E. H. (2018). Principled machine learning using the Super
Learner. Sociological Methods & Research, (January), 1–24. doi:10.1177/
0049124117747301

Back, M. D., Stopfer, J. M., Vazire, S., Gaddis, S., Schmukle, S. C., Egloff,
B., & Gosling, S. D. (2010). Facebook profiles reflect actual personality,
not self-idealization. Psychological Science, 21 (3), 372–374. doi:10.1177/
0956797609360756

Baldi, P. F. & Hornik, K. (1995). Learning in linear neural networks: A survey.
IEEE Transactions on Neural Networks, 6 (4), 837–858. doi:10.1109/72.
392248

Barto, D., Bird, C. W., Hamilton, D. A., & Fink, B. C. (2017). The Simple
Video Coder : A free tool for efficiently coding social video data. Behavioral
Research Methods, 49 (4), 1563–1568. doi:10.3758/s13428-016-0787-0

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
5 (2), 157–166.

Bishop, C. M. (2007). Machine Learning and Pattern Recoginiton. New York,
NY: Springer.

Bollen, K. A. (1989). Structural equations with latent variables. Wiley.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for

optimal margin classifiers. Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, 144–152. doi:10.1145/130385.130401

Breiman, L. (2001). Statistical Modeling : The Two Cultures. Statistical Science,
16 (3), 199–231.

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechani-
cal Turk. Perspectives on Psychological Science, 6 (1), 3–5. doi:10.1177/
1745691610393980

Bzdok, D., Engemann, D., Grisel, O., Varoquaux, G., & Thirion, B. (2018).
Prediction and inference diverge in biomedicine: Simulations and real-
world data. bioRxiv, 1–22. doi:10.1101/327437

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple
regression/correlation analysis for the behavioral sciences (3rd.). New York:
Psychology Press.

40

https://dx.doi.org/10.1016/j.cviu.2018.05.001
https://www.nber.org/chapters/c14009.pdf
https://dx.doi.org/10.1177/0049124117747301
https://dx.doi.org/10.1177/0049124117747301
https://dx.doi.org/10.1177/0956797609360756
https://dx.doi.org/10.1177/0956797609360756
https://dx.doi.org/10.1109/72.392248
https://dx.doi.org/10.1109/72.392248
https://dx.doi.org/10.3758/s13428-016-0787-0
https://dx.doi.org/10.1145/130385.130401
https://dx.doi.org/10.1177/1745691610393980
https://dx.doi.org/10.1177/1745691610393980
https://dx.doi.org/10.1101/327437


Csáji, B. (2001). Approximation with artificial neural networks. MSc. thesis, 45.
doi:10.1.1.101.2647

Doya, K. (1993). Bifurcations of recurrent neural networks in gradient descent
learning. IEEE Transactions on Neural Networks, 1, 75–80. Retrieved from
https://pdfs.semanticscholar.org/b579/27b713a6f9b73c7941f99144165396483478.
pdf

Dwyer, D. B., Falkai, P., & Koutsouleris, N. (2018). Machine learning approaches
for clinical psychology and psychiatry. Annual Review of Clinical Psychol-
ogy, 14, 91–118. doi:10.1146/annurev-clinpsy-032816-045037

Gamboa, J. (2017). Deep learning for time-series analysis. Retrieved from https:
//arxiv.org/pdf/1701.01887.pdf

Gates, K. M. & Molenaar, P. C. M. (2012). Group search algorithm recovers
effective connectivity maps for individuals in homogeneous and heteroge-
neous samples. NeuroImage, 63 (1), 310–319. doi:10.1016/j.neuroimage.
2012.06.026

Gelman, A. & Loken, E. (2013). The statistical crisis in science. American
Scientist, 102, 460–465. doi:10.2307/j.ctvc778jw.30

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks.
Proceedings of Machine Learning Research, 15, 315–323. doi:10.1.1.208.6449.
arXiv: 1502.03167

Golder, S. A. & Macy, M. W. (2011). Diurnal and seasonal mood vary with work,
sleep, and daylength across diverse cultures. Science, 333 (September),
1878–1882.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge,
MA: MIT Press. Retrieved from http://www.deeplearningbook.org

Gosling, S. D., Augustine, A. A., Vazire, S., Holtzman, N., & Gaddis, S.
(2011). Manifestations of personality in online social networks: Self-reported
Facebook-related behaviors and observable profile information. Cyberpsy-
chology, Behavior, and Social Networking, 14 (9), 483–488. doi:10.1089/
cyber.2010.0087

Gosling, S. D., Vazire, S., Srivastava, S., & John, O. P. (2004). Should we trust
web-based studies? A comparative analysis of six preconceptions about
Internet questionnaires. American Psychologist, 59 (2), 93–104. doi:10.1037/
0003-066X.59.2.93

Hamaker, E. L. & Wichers, M. (2017). No time like the present: Discovering
the hidden dynamics in intensive longitudinal data. Current Directions in
Psychological Science, 26 (1), 10–15. doi:10.1177/0963721416666518

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical
learning: Data mining, inference, and prediction (2nd ed.). New York:
Springer. Retrieved from https://web.stanford.edu/%7B~%7Dhastie/
Papers/ESLII.pdf

Henry, T. & Gates, K. (2017). Causal search procedures for fMRI: Review and
suggestions. Behaviormetrika, 44 (1), 193–225. doi:10.1007/s41237-016-
0010-8

41

https://dx.doi.org/10.1.1.101.2647
https://pdfs.semanticscholar.org/b579/27b713a6f9b73c7941f99144165396483478.pdf
https://pdfs.semanticscholar.org/b579/27b713a6f9b73c7941f99144165396483478.pdf
https://dx.doi.org/10.1146/annurev-clinpsy-032816-045037
https://arxiv.org/pdf/1701.01887.pdf
https://arxiv.org/pdf/1701.01887.pdf
https://dx.doi.org/10.1016/j.neuroimage.2012.06.026
https://dx.doi.org/10.1016/j.neuroimage.2012.06.026
https://dx.doi.org/10.2307/j.ctvc778jw.30
https://dx.doi.org/10.1.1.208.6449
http://arxiv.org/abs/1502.03167
http://www.deeplearningbook.org
https://dx.doi.org/10.1089/cyber.2010.0087
https://dx.doi.org/10.1089/cyber.2010.0087
https://dx.doi.org/10.1037/0003-066X.59.2.93
https://dx.doi.org/10.1037/0003-066X.59.2.93
https://dx.doi.org/10.1177/0963721416666518
https://web.stanford.edu/%7B~%7Dhastie/Papers/ESLII.pdf
https://web.stanford.edu/%7B~%7Dhastie/Papers/ESLII.pdf
https://dx.doi.org/10.1007/s41237-016-0010-8
https://dx.doi.org/10.1007/s41237-016-0010-8


Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen (Doc-
toral dissertation, Technische Universität München). Retrieved from http:
//www.bioinf.jku.at/publications/older/3804.pdf

Huang, H., Cao, B., Yu, P. S., Wang, C. D., & Leow, A. D. (2018). DpMood:
Exploiting local and periodic typing dynamics for personalized mood
prediction. Proceedings of the IEEE International Conference on Data
Mining, 2018-Novem, 157–166. doi:10.1109/ICDM.2018.00031

Iliev, R., Dehghani, M., & Sagi, E. (2015). Automated text analysis in psychology:
methods, applications, and future developments. Language and Cognition,
7 (2), 265–290. doi:10.1017/langcog.2014.30

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the
best multi-stage architecture for object recognition? Proceedings of the
IEEE International Conference on Computer Vision.

Jiang, Y., Bosch, N., Baker, R. S., Paquette, L., Ocumpaugh, J., Andres,
J. M. A. L., . . . Biswas, G. (2018). Expert feature-engineering vs. deep
neural networks: Which is better for sensor-free affect detection? In-
ternational Conference on Artificial Intelligence in Education, 198–211.
doi:10.1007/978-3-319-93843-1_15

Karlsson, L., Loutfi, A., & Längkvist, M. (2014). A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recognition
Letters, 42 (1), 11–24. doi:10.1016/j.patrec.2014.01.008

Kennard, R. W. & Hoerl, A. E. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12 (1), 55–67.

Kleinberg, J., Ludwig, J., Mullainathan, S., & Obermeyer, Z. (2015). Prediction
policy problems. American Economic Review, 105 (5), 491–495. doi:10.
1257/aer.p20151023

Kosinski, M., Stillwell, D., & Graepel, T. (2013). Private traits and attributes
are predictable from digital records of human behavior. Proceedings of
the National Academy of Sciences, 110 (15), 5802–5805. doi:10.1073/pnas.
1218772110

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 1097–1105.

Kutner, M., Nachtsheim, C., Neter, J., & Li, W. (2004). Applied linear statistical
models (5th ed.). McGraw Hill.

Landers, R. N., Brusso, R. C., Cavanaugh, K. J., & Collmus, A. B. (2016). A
primer on theory-driven web scraping: Automatic extraction of big data
from the Internet for use in psychological research. Psychological Methods,
21 (4), 475–492. doi:10.1037/met0000081

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature Methods,
521 (1), 436–444. doi:10.1038/nmeth.3707

Lilienfeld, S. O., McKay, D., & Hollon, S. D. (2018). Why randomised controlled
trials of psychological treatments are still essential. The Lancet Psychiatry,
5 (7), 536–538. doi:10.1016/s2215-0366(18)30045-2

42

http://www.bioinf.jku.at/publications/older/3804.pdf
http://www.bioinf.jku.at/publications/older/3804.pdf
https://dx.doi.org/10.1109/ICDM.2018.00031
https://dx.doi.org/10.1017/langcog.2014.30
https://dx.doi.org/10.1007/978-3-319-93843-1_15
https://dx.doi.org/10.1016/j.patrec.2014.01.008
https://dx.doi.org/10.1257/aer.p20151023
https://dx.doi.org/10.1257/aer.p20151023
https://dx.doi.org/10.1073/pnas.1218772110
https://dx.doi.org/10.1073/pnas.1218772110
https://dx.doi.org/10.1037/met0000081
https://dx.doi.org/10.1038/nmeth.3707
https://dx.doi.org/10.1016/s2215-0366(18)30045-2


Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent
neural networks for sequence learning, 1–38. Retrieved from http://arxiv.
org/abs/1506.00019

Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The expressive power of
neural networks: A view from the width. Conference on Neural Information
Processing Systems. Retrieved from http://arxiv.org/abs/1709.02540

Marcoulides, G. A., Ing, M., & Hoyle, R. (2014). Automated structural equation
modeling strategies. In Handbook of structural equation modeling (Chap. 40,
pp. 690–704).

Marcus, G. (2018). Deep learning: A critical appraisal, 1–24. Retrieved from
https://arxiv.org/abs/1801.00631.pdf

McClelland, J. L., Rumelhart, D. E., & PDP Research Group. (1986). Parallel
Distributed Processing Vol. 1. Cambridge, MA: MIT Press.

McCulloch, W. S. & Pitts, W. H. (1943). A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

Meehl, P. E. (1990). Why summaries of research on psychological theories are
often uninterpretable. Psychological Reports, 66, 195–244. doi:10.4324/
9780203052341

Mikelsons, G., Smith, M., Mehrotra, A., & Musolesi, M. (2017). Towards deep
learning models for psychological state prediction using smartphone data:
Challenges and opportunities. Conference on Neural Information Processing
Systems. Retrieved from http://arxiv.org/abs/1711.06350

Miller, G. (2012). The smartphone psychology manifesto. Perspectives on Psy-
chological Science, 7 (3), 221–237. doi:10.1177/1745691612441215

Montavon, G., Samek, W., & Müller, K. R. (2017). Methods for interpreting and
understanding deep neural networks. Digital Signal Processing: A Review
Journal, 73, 1–15. doi:10.1016/j.dsp.2017.10.011

Mumford, J. A. & Ramsey, J. D. (2014). Bayesian networks for fMRI: A primer.
NeuroImage, 86, 573–582. doi:10.1016/j.neuroimage.2013.10.020

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge,
MA: MIT Press. doi:10.1007/978-94-011-3532-0_2

Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted Boltz-
mann machines. International Conference on Machine Learnning, (3).
doi:10.1.1.165.6419

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.
Retrieved from http://neuralnetworksanddeeplearning.com/about.html

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training
recurrent neural networks. Retrieved from https://arxiv.org/abs/1211.5063

Pereira, F., Mitchell, T., & Botvinick, M. (2009). Machine learning classifers
and fMRI: A tutorial overview. NeuroImage, 45, S199–S209. doi:10.1016/j.
neuroimage.2008.11.007

Plomin, R. & Davis, O. S. P. (2009). The future of genetics in psychology and
psychiatry: Microarrays, genome-wide association, and non-coding RNA.
Journal of Child Psychology and Psychiatry, 50 (1-2), 63–71. doi:10.1038/
mp.2011.182

43

http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/1709.02540
https://arxiv.org/abs/1801.00631.pdf
https://dx.doi.org/10.4324/9780203052341
https://dx.doi.org/10.4324/9780203052341
http://arxiv.org/abs/1711.06350
https://dx.doi.org/10.1177/1745691612441215
https://dx.doi.org/10.1016/j.dsp.2017.10.011
https://dx.doi.org/10.1016/j.neuroimage.2013.10.020
https://dx.doi.org/10.1007/978-94-011-3532-0_2
https://dx.doi.org/10.1.1.165.6419
http://neuralnetworksanddeeplearning.com/about.html
https://arxiv.org/abs/1211.5063
https://dx.doi.org/10.1016/j.neuroimage.2008.11.007
https://dx.doi.org/10.1016/j.neuroimage.2008.11.007
https://dx.doi.org/10.1038/mp.2011.182
https://dx.doi.org/10.1038/mp.2011.182


Ripley, B. D. (2005). Pattern recognition and neural networks. Cambridge, UK:
Cambridge University Press.

Rissman, J., Greely, H. T., & Wagner, A. D. (2010). Detecting individual memo-
ries through the neural decoding of memory states and past experience.
Proceedings of the National Academy of Sciences of the United States of
America, 107 (21), 9849–54. doi:10.1073/pnas.1001028107

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65 (6), 386–408.
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
335.3398%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%7B%5C%
%7D0Apapers://d471b97a-e92c-44c2-8562-4efc271c8c1b/Paper/p322

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25 (3), 289–310.
doi:10.2139/ssrn.1351252

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology:
Undisclosed flexibility in data collection and analysis allows presenting
anything as significant. Psychological Science, 22 (11), 1359–1366. doi:10.
1177/0956797611417632

Sonoda, S. & Murata, N. (2017). Neural network with unbounded activation
functions is universal approximator. Applied and Computational Harmonic
Analysis, 43 (2), 233–268. doi:10.1016/j.acha.2015.12.005

Suhara, Y., Xu, Y., & Pentland, A. S. (2017). Forecasting depressed mood based
on self-reported histories via recurrent neural networks. International World
Wide Web Conference Committee, 715–724.

Taylor, S., Jaques, N., Nosakhare, E., Sano, A., & Picard, R. (2017). Personalized
multitask learning for predicting tomorrow’s mood, stress, and health. IEEE
Transactions on Affective Computing, (99). Retrieved from https://affect.
media.mit.edu/pdfs/17.TaylorJaques-PredictingTomorrowsMoods.pdf

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B (Methodological), 58 (1), 267–288.

Trull, T. J. & Ebner-Priemer, U. (2014). The role of ambulatory assessment in
psychological science. Current Directions in Psychological Science, 23 (6),
466–470. doi:10.1177/0963721414550706

Vieira, S., Pinaya, W. H., & Mechelli, A. (2017). Using deep learning to investi-
gate the neuroimaging correlates of psychiatric and neurological disorders:
Methods and applications. Neuroscience and Biobehavioral Reviews, 74,
58–75. doi:10.1016/j.neubiorev.2017.01.002

Walsh, C. G., Ribeiro, J. D., & Franklin, J. C. (2017). Predicting risk of sui-
cide attempts over time through machine kearning. Clinical Psychological
Science, 5 (3), 457–469. doi:10.1177/2167702617691560

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis
in the behavioral sciences (Doctoral dissertation, Harvard University).
Retrieved from https://ci.nii.ac.jp/naid/10004070196/

Wu, S., Harris, T. J., & Mcauley, K. B. (2007). The use of simplified or misspec-
ified models: Linear case. The Canadian Journal of Chemical Engineering,
85 (4), 386–398. doi:10.1002/cjce.5450850401

44

https://dx.doi.org/10.1073/pnas.1001028107
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%7B%5C%%7D0Apapers://d471b97a-e92c-44c2-8562-4efc271c8c1b/Paper/p322
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%7B%5C%%7D0Apapers://d471b97a-e92c-44c2-8562-4efc271c8c1b/Paper/p322
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf%7B%5C%%7D0Apapers://d471b97a-e92c-44c2-8562-4efc271c8c1b/Paper/p322
https://dx.doi.org/10.2139/ssrn.1351252
https://dx.doi.org/10.1177/0956797611417632
https://dx.doi.org/10.1177/0956797611417632
https://dx.doi.org/10.1016/j.acha.2015.12.005
https://affect.media.mit.edu/pdfs/17.TaylorJaques-PredictingTomorrowsMoods.pdf
https://affect.media.mit.edu/pdfs/17.TaylorJaques-PredictingTomorrowsMoods.pdf
https://dx.doi.org/10.1177/0963721414550706
https://dx.doi.org/10.1016/j.neubiorev.2017.01.002
https://dx.doi.org/10.1177/2167702617691560
https://ci.nii.ac.jp/naid/10004070196/
https://dx.doi.org/10.1002/cjce.5450850401


Yarkoni, T. (2010). Personality in 100,000 words: A large-scale analysis of per-
sonality and word use among bloggers. Journal of Research in Personality,
44 (3), 363–373. doi:10.1016/j.jrp.2010.04.001

Yarkoni, T. (2012). Psychoinformatics: New horizons at the interface of the
psychological and computing sciences. Current Directions in Psychological
Science, 21 (6), 391–397. doi:10.1177/0963721412457362

Yarkoni, T. & Westfall, J. (2017). Choosing prediction over explanation in
psychology: Lessons from machine learning. Perspectives on Psychological
Science, 12 (6), 1100–1122. doi:10.1177/1745691617693393

Appendix A Single-Layer Feedforward Neural Net-
works Generalize Linear Regression

In this appendix, we show that linear regression is a special case of the single-
layer feedforward neural network (FNN). We discuss the problem of interpreting
the single-layer FNN’s parameters as well as the more general problem of
overparameterization in artificial neural networks (ANNs).

To show that linear regression is a special case of the single-layer FNN, we
first choose the single-layer FNN’s activation functions g(·) and σ(·) to be identity
functions:

g(z) = z, σ(z) = z. (A.1)

Our single-layer FNN can then be written as

y = byh0 +

p1∑
k=1

byhk hk + e, (A.2)

hk = bhxk,0 +

p∑
j=1

bhxk,jxj , k = 1, . . . , p1. (A.2a)

We can substitute equation A.2a into equation A.2 and rearrange to obtain

y = byh0 +

p1∑
k=1

byhk hk + e (A.2)

= byh0 +

p1∑
k=1

byhk (bhxk,0 +

p∑
j=1

bhxk,jxj) + e (A.3)

= b′0 +

p∑
j=1

b′jxj + e, (A.4)

where

b′0 = byh0 +

p1∑
k=1

byhk bhxk,0, b
′
j =

p1∑
k=1

byhk bhxk,j , j = 1, . . . , p. (A.4a)

45

https://dx.doi.org/10.1016/j.jrp.2010.04.001
https://dx.doi.org/10.1177/0963721412457362
https://dx.doi.org/10.1177/1745691617693393


Equation A.4 clearly has the same form as the linear regression model in equa-
tion 11.5 We have therefore demonstrated that the single-layer FNN with identity
activation functions reduces to the linear regression model.

We can directly interpret the b′0, b′1, . . . , b′p parameters just like we can directly
interpret the b0, b1, . . . , bp parameters in linear regression. However, the single-
layer FNN parameters (i.e., the parameters with (·)yh and (·)hx superscripts)
cannot be interpreted. This is because the single-layer FNN is overparameterized
- that is, the model has more parameters than equations. Specifically, the single-
layer FNN has (p + 2) × p1 + 1 parameters total versus p + 1 equations total
(see equations 24b, 24d, and 24f to count parameters and equations A.4a to
count equations). Infinitely many sets of single-layer FNN parameters will satisfy
equations A.4a and produce a valid model, so any particular set of single-layer
FNN parameters we choose will have no intrinsic meaning (Kutner et al., 2004).

We showed that linear regression is a special case of the single-layer FNN
to help readers better understand the relationship between these models. In
practice, using a single-layer FNN to perform linear regression is overly com-
plicated. Our toy example did, however, highlight a very real, practical issue:
Overparameterization. Nearly all ANNs are overparameterized and therefore
have uninterpretable parameters. The uninterpretability of ANN parameters is
sometimes seen as a major shortcoming. However, ANNs often achieve much
higher predictive accuracy than simpler, directly interpretable models like linear
regression, especially when the true causal structure underlying the data set
contains weakly correlated interactions between large numbers of variables. Ad-
ditionally, recent work has explored methods for interpreting ANNs that avoid
the overparameterization problem (Montavon et al., 2017). These methods aim
to interpret the concepts learned by the ANN’s hidden layers and to identify the
most important input variables used by the ANN to make predictions.

Appendix B Deep Feedforward Neural Network
Equations

In this appendix, we describe the deep feedforward neural network (FNN) using
equations.

To produce its first p1 hidden layer nodes, the deep FNN computes p1
weighted sums of the input values xj plus an intercept, then applies an activation
function σ(1)(·) to each sum:

h
(1)
k = σ(1)(bh1x

k,0 +

p∑
j=1

bh1x
k,j xj), k = 1, . . . , p1, (B.1)

where (·)h1x superscripts indicate to weight parameters to the first hidden layer
nodes from the input nodes. Equation B.1 is clearly the same as equation 17

5When we use a suitable optimization procedure, our estimates for the b′0, b
′
1, . . . , b

′
p pa-

rameters will converge to the b̂0, b̂1, . . . , b̂p parameter estimates produced by the usual linear
regresssion algorithm (see equation 10; e.g., Baldi & Hornik, 1995).

46



substituted into equation 18 - that is, the deep FNN’s first hidden layer is clearly
computed the same way as the single-layer FNN’s single hidden layer.

The deep FNN uses the hidden layer nodes at layer ` − 1 to produce the
hidden layer nodes at layer `. Specifically, successive hidden layer nodes are
produced by computing weighted sums over the previous hidden layer nodes plus
intercept terms, then applying activation functions to these sums:

h
(`)
k = σ(`)(b

h`h`−1

k,0 +

p`−1∑
j=1

b
h`h`−1

k,j h
(`−1)
j ), k = 1, . . . , p`, ` = 2, . . . , q, (B.2)

where q denotes the model depth, p` denotes the number of nodes at hidden
layer `, and (·)h`h`−1 superscripts indicate weight parameters to hidden layer `
nodes from hidden layer `− 1 nodes.

Finally, the output node is predicted by taking a weighted sum of the final
hidden layer nodes plus an intercept term, then applying an activation function
g(·) to this sum:

y = g(b
yhq

0 +

pq∑
k=1

b
yhq

k h
(q)
k ) + e, (B.3)

where (·)yhq superscripts indicate weight parameters to the output node from the
final hidden layer nodes and e is a random error term. As with the single-layer
FNN, choice of the activation function g(·) determines whether the deep FNN
will perform regression or classification.

Like single-layer FNNs, deep FNNs can be represented concisely using matri-
ces:

y = g
(
(byhq)>h(q) + b

yhq

0

)
+ e, (B.4)

h(`) = σ(`)(Bh`h`−1h(`−1) + b
h`h`−1

0 ), ` = 2, . . . , q, (B.4a)

h(1) = σ(Bh1xx + bh1x
0 ), (B.4b)

where x is the p × 1 input, Bh1x is the p1 × p weight matrix from the input
to the first hidden layer, bh1x

0 is the p1 × 1 intercept vector from the input to
the first hidden layer, h(`) is the p` × 1 hidden layer representation at layer `,
Bh`h`−1 is the p` × p`−1 weight matrix from hidden layer `− 1 to hidden layer `,
b
h`h`−1

0 is the p` × 1 intercept vector from hidden layer `− 1 to hidden layer `,
byhq is the pq × 1 weight vector from the final hidden layer to the output, and
b
yhq

0 is the intercept from the final hidden layer to the output.

47


	Introduction
	Objective

	Deciding to Use Deep Learning
	Common Kinds of Research Questions in Psychology
	Which Psychology Research Questions Are Suited to Machine Learning?
	Using machine learning to directly answer prediction-focused research questions
	Using machine learning to indirectly answer causal explanation-focused research questions

	Which Psychology Research Questions Are Suited to Deep Learning?

	Machine Learning Fundamentals
	Variable Terminology in Machine Learning
	A Recipe for Building Machine Learning Algorithms
	Linear regression as a machine learning algorithm

	Learning Models That Generalize
	Changing a model's representational capacity
	Regularizing a model
	Hyperparameter tuning


	Deep Learning Fundamentals
	Deep Learning Models and Terminology
	Overview of Artificial Neural Network Models
	Single-layer feedforward neural networks
	Deep feedforward neural networks
	Convolutional neural networks
	Recurrent neural networks


	Conclusion
	Acknowledgements
	Single-Layer Feedforward Neural Networks Generalize Linear Regression
	Deep Feedforward Neural Network Equations

