+ - 0:00:00
Notes for current slide
Notes for next slide

base Plotting

  • The traditional approach for plotting.
  • Separate functons for different plots


# Histogram in base R
hist(x = basel$alter,
xlab = "Alter",
ylab = "Häufigkeit",
main = "Histogramm Alter")




3 / 60

base Plotting

  • The traditional approach for plotting.
  • Separate functons for different plots


# Boxplot in base R
boxplot(formula = groesse ~ geschlecht,
data = basel,
xlab = "Geschlecht",
ylab = "Groesse",
main = "Box plot Groesse")




4 / 60

base Plotting

  • The traditional approach for plotting.
  • Separate functons for different plots


# Scatterplot in base R
plot(x = basel$groesse,
y = basel$einkommen,
xlab = "Height",
ylab = "Einkommen",
main = "Scatterplot Groesse x Einkommen")




5 / 60

Probleme mit Base R plotting

  • Aesthetics are outdated.
  • Pretty plots = lots of code.
  • Relatively inflexible.
6 / 60

The mighty tidyverse

The tidyverse is a collection of high-performing, user-friendly R packages, created explicitly for efficient data analytics.

  1. ggplot2 for graphics.
  2. dplyr for data wrangling.
  3. tidyr for data wrangling.
  4. readr for data I/O.
  5. purrr for function programming.
  6. tibble for modern data.frames.

7 / 60

Modular graphics in ggplot2

  • data: The dataset
  • mapping: The structure of the plot
    • What should axes represent?
    • What should color/size represent?
  • geoms: Objects drawn within plot
  • labs: Plot annotation
  • themes: Aesthetic design
  • facets: Plot facets
  • scales: Scaling of axes

8 / 60

Part 1: Wir kreieren diesen Plot

  • data
    • The mpg dataset
  • mapping
    • Engine displacement onto x-axis
    • Miles per gallon onto y-axis
    • Color according to vehicle class
  • geoms
    • Plot data as points
    • Add regression line
  • labs
    • Annotation of axes and titles
  • themes
    • black-white aesthetics

9 / 60

ggplot()

  • All plots start with ggplot()
  • 2 central arguments
    • data | The dataset (tibble)
    • mapping | The plot structure defined using aes()
ggplot(data = mpg)

10 / 60

aes()

  • aes() defines the structure for the mapping argument
  • Central arguments:
    • x,y | Defines axes
    • color,fill | Defines colors
    • alpha | Defines transparency
    • size | Defines size
    • shape | Defines object sbapes (e.g. circles or squares)
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy))

11 / 60

+

  • The + operator extents plots with additional modules.


ggplot(data = mpg,
mapping = aes(x = displ,
y = hwy)) +
# Plotte Daten als Punkte
geom_point()

12 / 60

geom_*()

  • geom_*() functions define the geometric objects used to represent the data.
  • Some common geoms:
    • geom_point() | for points
    • geom_bar() | for bars
    • geom_boxplot() | for box-plots
    • geom_count() | for points scaled according to frequency
    • geom_smooth() | for curves

13 / 60


geom_count()


ggplot(data = mpg,
mapping = aes(x = displ, y = hwy)) +
geom_count()


geom_bar()


ggplot(data = mpg,
mapping = aes(x = class)) +
geom_bar()

14 / 60


geom_boxplot()


ggplot(data = mpg,
mapping = aes(x = class,
y = hwy)) +
geom_boxplot()


geom_violin()


ggplot(data = mpg,
mapping = aes(x = class,
y = hwy)) +
geom_violin()

15 / 60

aes()

  • aes() defines the structure for the mapping argument
  • 2 arguments:
    • x,y | Defines axes
    • color,fill | Defines colors
ggplot(data = mpg,
mapping = aes(x = displ,
y = hwy,
# Farbe gemäss Klasse
color = class)) +
geom_point()

17 / 60

geom_smooth()

  • geom_smooth() fits curves to the data and adds them to the plot.
  • Central arguments:
    • method | Type of model fitted to data
    • color | Color
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy,
col = class)) +
geom_point() +
# Add curve
geom_smooth(col = "blue")

19 / 60

geom_smooth()

  • geom_smooth() fits curves to the data and adds them to the plot.
  • Central arguments:
    • method | Type of model fitted to data
    • color | Color
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy,
col = class)) +
geom_point() +
# Add curve
geom_smooth(col = "blue",
method = "lm")

20 / 60

Inheritance

  • geoms inherit their settings from mapping.
  • Vererbte Settings can be overruled using the geoms own arguments.
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy,
col = class)) +
geom_point() +
geom_smooth()
21 / 60

Inheritance

  • geoms inherit their settings from mapping.
  • Vererbte Settings can be overruled using the geoms own arguments.
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy,
col = class)) +
geom_point() +
geom_smooth()

22 / 60

labs()

  • labs() defines all annotation of the plot.
  • Central arguments:
    • x,y | annotation of axes
    • title, subtitle | title and subtitle
    • caption | caption
ggplot(...) +
labs(x = "Engine displacement in liters",
y = "Highway miles per gallon",
title = "MPG dataset",
subtitle = "Cars with higher Eng...",
caption = "Source: MPG dataset...")

24 / 60

Formatierung mit theme_*()

  • Mit theme() können alle Aspekte eines Plots mit einem vorgefertigten Satz an Einstellungen ästhetisch formatiert werden.
  • Einige themes:
    • theme_gray()
    • theme_classic()
    • theme_void()
    • theme_excel() (ggthemes)
    • theme_economist() (ggthemes)
    • theme_bw()
ggplot(...) + theme_gray()

26 / 60

Formatierung mit theme_*()

  • Mit theme() können alle Aspekte eines Plots mit einem vorgefertigten Satz an Einstellungen ästhetisch formatiert werden.
  • Einige themes:
    • theme_gray()
    • theme_classic()
    • theme_void()
    • theme_excel() (ggthemes)
    • theme_economist() (ggthemes)
    • theme_bw()
ggplot(...) + theme_classic()

27 / 60

Formatierung mit theme_*()

  • Mit theme() können alle Aspekte eines Plots mit einem vorgefertigten Satz an Einstellungen ästhetisch formatiert werden.
  • Einige themes:
    • theme_gray()
    • theme_classic()
    • theme_void()
    • theme_excel() (ggthemes)
    • theme_economist() (ggthemes)
    • theme_bw()
ggplot(...) + theme_void()

28 / 60

Formatierung mit theme_*()

  • Mit theme() können alle Aspekte eines Plots mit einem vorgefertigten Satz an Einstellungen ästhetisch formatiert werden.
  • Einige themes:
    • theme_gray()
    • theme_classic()
    • theme_void()
    • theme_excel() (ggthemes)
    • theme_economist() (ggthemes)
    • theme_bw()
ggplot(...) + theme_excel()

29 / 60

Formatierung mit theme_*()

  • Mit theme() können alle Aspekte eines Plots mit einem vorgefertigten Satz an Einstellungen ästhetisch formatiert werden.
  • Einige themes:
    • theme_gray()
    • theme_classic()
    • theme_void()
    • theme_excel() (ggthemes)
    • theme_economist() (ggthemes)
    • theme_bw()
ggplot(...) + theme_economist()

30 / 60

Formatierung mit theme_*()

  • Mit theme() können alle Aspekte eines Plots mit einem vorgefertigten Satz an Einstellungen ästhetisch formatiert werden.
  • Einige themes:

    • theme_gray()
    • theme_classic()
    • theme_void()
    • theme_excel() (ggthemes)
    • theme_economist() (ggthemes)
    • theme_bw()
ggplot(...) + theme_bw()

31 / 60

Et voila!

ggplot(data = mpg,
mapping = aes(x = displ, y = hwy,
col = class)) +
geom_point() +
geom_smooth(col = "blue",
method = "lm")+
labs(
x = "Engine displacement in liters",
y = "Highway miles per gallon",
title = "MPG dataset",
subtitle = "Cars with higher Eng...",
caption = "Source: MPG dataset...") +
theme_bw()

32 / 60

Part 2: Going crazy

  • Create and alter a gg -object.
  • Split plot in facets
  • Use themes to alter all aesthetics aspects of your plot
  • Create your own themes.
  • Save your plot as .pdf or .png.
33 / 60

The gg object

  • The ggplot function generates a gg object that can be assigned
  • gg objects can be altered or extended using +.
  • Running the object generates the plot.
# Assign plot
my_plot <- ggplot(data = mpg,
aes(x = displ,y = hwy)) +
geom_point() + theme_bw()
# Show class
class(my_plot)
[1] "gg" "ggplot"
my_plot

34 / 60

The gg object

  • The ggplot function generates a gg object that can be assigned
  • gg objects can be altered or extended using +.
  • Running the object generates the plot.
# Assign plot
my_plot <- ggplot(data = mpg,
aes(x = displ,y = hwy)) +
geom_point() + theme_bw()
# show class
class(my_plot)
[1] "gg" "ggplot"
my_plot + geom_smooth()

35 / 60

facet_*()

  • Facetting creates the same plot for groups defined by a third variable.
  • Facet functions:
    • facet_wrap()
    • facet_grid()
# Without facetting
ggplot(data = mpg,
mapping = aes(x = displ,
y = hwy)) +
geom_point() + theme_bw()

36 / 60

facet_wrap()

  • Facetting creates the same plot for groups defined by a third variable.
  • Facet functions:
    • facet_wrap()
    • facet_grid()
# Without facetting
ggplot(data = mpg,
mapping = aes(x = displ,
y = hwy)) +
geom_point() + theme_bw() +
facet_wrap(~ class)

37 / 60

facet_grid()

  • Facetting creates the same plot for groups defined by a third variable.
  • Facet functions:
    • facet_wrap()
    • facet_grid()
# Without facetting
ggplot(data = mpg,
mapping = aes(x = displ,
y = hwy)) +
geom_point() + theme_bw() +
facet_grid(drv ~ class)

38 / 60

theme()

  • 87 arguments in theme() can be used to alter all aesthetic aspects of a plot.
  • Requires helper functions:
    • element_rect() | for areas
    • element_line() | for lines
    • element_text() | for text
    • element_blank() | for removals
# Use theme
my_plot +
theme(argument = element_*(),
argument = element_*(),
...)

39 / 60

Background

  • Arguments for the background:
    • panel.background | for the inner background
    • plot.background | for the outer background
# Change background
my_plot +
theme(
panel.background =
element_rect(fill = 'tomato'),
plot.background =
element_rect(fill = 'burlywood'))

40 / 60

Grid

  • Arbguments for the grid:
    • panel.grid.major | larger grid lines
    • panel.grid.minor | smaller grid lines
# Change grid
my_plot +
theme(
panel.grid.major =
element_line(colour = "salmon"),
panel.grid.minor =
element_line(colour = "seagreen"))

41 / 60

Raster

  • Arbguments for the grid:
    • panel.grid.major | larger grid lines
    • panel.grid.minor | smaller grid lines
# Change grid
my_plot +
theme(
panel.grid.major =
element_line(colour = "salmon",
size = 3),
panel.grid.minor =
element_line(colour = "seagreen",
size = 1.5))

42 / 60

Axes

  • Arguments for axes:
    • axis.line.x | x-axis
    • axis.line.y | y-axis
    • axis.title.x | x-axis title
    • axis.title.y | y-axis title
# Change axes
my_plot +
theme(
axis.line.x =
element_line(colour = "deeppink",
size = 3.5,
lineend = "butt"),
axis.line.y =
element_line(colour = "deeppink",
size = 3.5))

43 / 60

Axes

  • Arguments for axes:
    • axis.line.x | x-axis
    • axis.line.y | y-axis
    • axis.title.x | x-axis title
    • axis.title.y | y-axis title
# Change axes titles
my_plot +
theme(
axis.title.x =
element_text(family = "Comic Sans MS",
size = 30),
axis.title.y =
element_text(family = "Comic Sans MS",
size = 30))

44 / 60

Further arguments (incomplete)

theme()

Argument Description
axis.title.* Everything concerning axes titles
axis.ticks.* Everything concerning axes tick marks
axis.line.* Everything concerning axis lines
legend.* Everything concerning legends
panel.* Everything concerning the inner plot region
plot.* Everything concerning the outer plot region
strip.* Everything concerning the facet headers


element_rect()

Argument Description
fill Color for filling areas
colour Color for borders

element_line()

Argument Description
size Line sizes
linetype Type of line

element_text()

Argument Description
face Font type (e.g., italic or bold)
colour Font color
45 / 60

Own themes

my_theme <- theme(
panel.background =
element_rect(fill = 'tomato'),
plot.background =
element_rect(fill = 'burlywood'),
panel.grid.major = element_line(
colour = "salmon", size = 3),
panel.grid.minor = element_line(
colour = "seagreen", size = 1.5),
axis.line.x = element_line(
colour = "deeppink", size = 3.5,
lineend = "butt"),
axis.line.y = element_line(
colour = "deeppink", size = 3.5),
axis.title.x = element_text(
family = "Comic Sans MS", size = 30),
axis.title.y = element_text(
family = "Comic Sans MS", size = 30))
my_plot

46 / 60

Own themes

my_theme <- theme(
panel.background =
element_rect(fill = 'tomato'),
plot.background =
element_rect(fill = 'burlywood'),
panel.grid.major = element_line(
colour = "salmon", size = 3),
panel.grid.minor = element_line(
colour = "seagreen", size = 1.5),
axis.line.x = element_line(
colour = "deeppink", size = 3.5,
lineend = "butt"),
axis.line.y = element_line(
colour = "deeppink", size = 3.5),
axis.title.x = element_text(
family = "Comic Sans MS", size = 30),
axis.title.y = element_text(
family = "Comic Sans MS", size = 30))
my_plot + my_theme

47 / 60

scale_*()

  • scale_*() funcgions adjust all sizes and lengths.
  • Types of scale_*() functions:
    • scale_xy_* | Scale axes
    • scale_color_*, scale_color_* | Scale colors
    • scale_size_* | Scale sizes
    • scale_alpha_* | Scale transparency
    • ...
my_plot

48 / 60

scale_x_continuous()

  • scale_*() funcgions adjust all sizes and lengths.
  • Types of scale_*() functions:
    • scale_xy_* | Scale axes
    • scale_color_*, scale_color_* | Scale colors
    • scale_size_* | Scale sizes
    • scale_alpha_* | Scale transparency
    • ...
my_plot +
scale_x_continuous(limits = c(1, 30))

49 / 60

scale_x_reverse()

  • scale_*() funcgions adjust all sizes and lengths.
  • Types of scale_*() functions:
    • scale_xy_* | Scale axes
    • scale_color_*, scale_color_* | Scale colors
    • scale_size_* | Scale sizes
    • scale_alpha_* | Scale transparency
    • ...
my_plot +
scale_x_reverse()

50 / 60

scale_color_hue()

  • scale_*() funcgions adjust all sizes and lengths.
  • Types of scale_*() functions:
    • scale_xy_* | Scale axes
    • scale_color_*, scale_color_* | Scale colors
    • scale_size_* | Scale sizes
    • scale_alpha_* | Scale transparency
    • ...
my_plot +
scale_colour_hue(h = c(160, 260))

51 / 60

scale_size()

  • scale_*() funcgions adjust all sizes and lengths.
  • Types of scale_*() functions:
    • scale_xy_* | Scale axes
    • scale_color_*, scale_color_* | Scale colors
    • scale_size_* | Scale sizes
    • scale_alpha_* | Scale transparency
    • ...
my_plot +
scale_size(range = c(1, 15))

52 / 60

Multiple plots

  • The patchwork package delivers a novel Syntax to join multiple plots in a single one.
  • patchwork syntax:
    • + | join plots
    • | | join horizontally
    • / | join vertically
    • () | bind plots
    • & | apply to all


# Speichere plots
pretty <- my_plot
ugly <- my_plot + my_theme
pretty + ugly

53 / 60

Multiple plots

  • The patchwork package delivers a novel Syntax to join multiple plots in a single one.
  • patchwork syntax:
    • + | join plots
    • | | join horizontally
    • / | join vertically
    • () | bind plots
    • & | apply to all


# Speichere plots
pretty <- my_plot
ugly <- my_plot + my_theme
pretty | ugly + pretty

54 / 60

Multiple plots

  • The patchwork package delivers a novel Syntax to join multiple plots in a single one.
  • patchwork syntax:
    • + | join plots
    • | | join horizontally
    • / | join vertically
    • () | bind plots
    • & | apply to all


# Speichere plots
pretty <- my_plot
ugly <- my_plot + my_theme
(pretty+pretty) / (pretty+pretty)

55 / 60

Multiple plots

  • The patchwork package delivers a novel Syntax to join multiple plots in a single one.
  • patchwork syntax:
    • + | join plots
    • | | join horizontally
    • / | join vertically
    • () | bind plots
    • & | apply to all


# Speichere plots
pretty <- my_plot
ugly <- my_plot + my_theme
(pretty+pretty) / (pretty+pretty) &
my_theme

56 / 60

Multiple plots

  • The patchwork package delivers a novel Syntax to join multiple plots in a single one.
  • patchwork syntax:
    • + | join plots
    • | | join horizontally
    • / | join vertically
    • () | bind plots
    • & | apply to all


# Speichere plots
pretty <- my_plot
ugly <- my_plot + my_theme
(pretty+pretty) / (pretty+pretty) +
plot_annotation(tag_levels = "A") &
theme(legend.position = "none")

57 / 60

ggsave()

  • Create graphic files with ggsave().
  • ggsave arguments:
    • filename | name of file
    • device | z.B. ".pdf" or ".png"
    • path | path to folder
    • height, width | height, width
    • unit | Unit for height, width
    • dpi | Resolution per unit
# Create plot
my_plot <- ggplot(data = mpg,
aes(x = displ, y = hwy)) +
geom_point() +
mytheme
# Save "my_plot.pdf"
ggsave(filename = "my_plot",
plot = my_plot,
device = "pdf",
path = "figures",
width = 6,
height = 4)
58 / 60

ggsave()

  • Create graphic files with ggsave().
  • ggsave arguments:
    • filename | name of file
    • device | z.B. ".pdf" or ".png"
    • path | path to folder
    • height, width | height, width
    • unit | Unit for height, width
    • dpi | Resolution per unit
# Create plot
my_plot <- ggplot(data = mpg,
aes(x = displ, y = hwy)) +
geom_point() +
mytheme
# Save "my_plot.pdf"
ggsave(filename = "my_plot",
plot = my_plot,
device = "png",
path = "figures",
width = 6,
height = 4)
59 / 60
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow