base
Plotting# Histogram in base Rhist(x = basel$alter, xlab = "Alter", ylab = "Häufigkeit", main = "Histogramm Alter")
base
Plotting# Boxplot in base Rboxplot(formula = groesse ~ geschlecht, data = basel, xlab = "Geschlecht", ylab = "Groesse", main = "Box plot Groesse")
base
Plotting# Scatterplot in base Rplot(x = basel$groesse, y = basel$einkommen, xlab = "Height", ylab = "Einkommen", main = "Scatterplot Groesse x Einkommen")
from healthhosts.com
tidyverse
The tidyverse
is a collection of high-performing, user-friendly R packages, created explicitly for efficient data analytics.
ggplot2
readr
for data I/O.purrr
for function programming.tibble
for modern data.frame
s.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
ggplot()
ggplot(data = mpg)
aes()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy))
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + # Plotte Daten als Punkte geom_point()
geom_*()
geom_count()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + geom_count()
geom_bar()
ggplot(data = mpg, mapping = aes(x = class)) + geom_bar()
geom_boxplot()
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) + geom_boxplot()
geom_violin()
ggplot(data = mpg, mapping = aes(x = class, y = hwy)) + geom_violin()
aes()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, # Farbe gemäss Klasse color = class)) + geom_point()
geom_smooth()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, col = class)) + geom_point() + # Add curve geom_smooth(col = "blue")
geom_smooth()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, col = class)) + geom_point() + # Add curve geom_smooth(col = "blue", method = "lm")
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, col = class)) + geom_point() + geom_smooth()
from catchingfire.ca
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, col = class)) + geom_point() + geom_smooth()
labs()
ggplot(...) + labs(x = "Engine displacement in liters", y = "Highway miles per gallon", title = "MPG dataset", subtitle = "Cars with higher Eng...", caption = "Source: MPG dataset...")
theme_*()
ggplot(...) + theme_gray()
theme_*()
ggplot(...) + theme_classic()
theme_*()
ggplot(...) + theme_void()
theme_*()
ggplot(...) + theme_excel()
theme_*()
ggplot(...) + theme_economist()
theme_*()
ggplot(...) + theme_bw()
ggplot(data = mpg, mapping = aes(x = displ, y = hwy, col = class)) + geom_point() + geom_smooth(col = "blue", method = "lm")+ labs( x = "Engine displacement in liters", y = "Highway miles per gallon", title = "MPG dataset", subtitle = "Cars with higher Eng...", caption = "Source: MPG dataset...") + theme_bw()
from lonniemillsap.com
# Assign plotmy_plot <- ggplot(data = mpg, aes(x = displ,y = hwy)) + geom_point() + theme_bw()# Show classclass(my_plot)
[1] "gg" "ggplot"
my_plot
# Assign plotmy_plot <- ggplot(data = mpg, aes(x = displ,y = hwy)) + geom_point() + theme_bw()# show classclass(my_plot)
[1] "gg" "ggplot"
my_plot + geom_smooth()
facet_*()
# Without facettingggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + geom_point() + theme_bw()
facet_wrap()
# Without facettingggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + geom_point() + theme_bw() + facet_wrap(~ class)
facet_grid()
# Without facettingggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + geom_point() + theme_bw() + facet_grid(drv ~ class)
theme()
# Use thememy_plot + theme(argument = element_*(), argument = element_*(), ...)
# Change backgroundmy_plot + theme( panel.background = element_rect(fill = 'tomato'), plot.background = element_rect(fill = 'burlywood'))
# Change gridmy_plot + theme( panel.grid.major = element_line(colour = "salmon"), panel.grid.minor = element_line(colour = "seagreen"))
# Change gridmy_plot + theme( panel.grid.major = element_line(colour = "salmon", size = 3), panel.grid.minor = element_line(colour = "seagreen", size = 1.5))
# Change axesmy_plot + theme( axis.line.x = element_line(colour = "deeppink", size = 3.5, lineend = "butt"), axis.line.y = element_line(colour = "deeppink", size = 3.5))
# Change axes titlesmy_plot + theme( axis.title.x = element_text(family = "Comic Sans MS", size = 30), axis.title.y = element_text(family = "Comic Sans MS", size = 30))
Argument | Description |
|
Everything concerning axes titles |
|
Everything concerning axes tick marks |
|
Everything concerning axis lines |
|
Everything concerning legends |
|
Everything concerning the inner plot region |
|
Everything concerning the outer plot region |
|
Everything concerning the facet headers |
Argument | Description |
|
Color for filling areas |
|
Color for borders |
Argument | Description |
|
Line sizes |
|
Type of line |
Argument | Description |
|
Font type (e.g., italic or bold) |
|
Font color |
my_theme <- theme( panel.background = element_rect(fill = 'tomato'), plot.background = element_rect(fill = 'burlywood'), panel.grid.major = element_line( colour = "salmon", size = 3), panel.grid.minor = element_line( colour = "seagreen", size = 1.5), axis.line.x = element_line( colour = "deeppink", size = 3.5, lineend = "butt"), axis.line.y = element_line( colour = "deeppink", size = 3.5), axis.title.x = element_text( family = "Comic Sans MS", size = 30), axis.title.y = element_text( family = "Comic Sans MS", size = 30))
my_plot
my_theme <- theme( panel.background = element_rect(fill = 'tomato'), plot.background = element_rect(fill = 'burlywood'), panel.grid.major = element_line( colour = "salmon", size = 3), panel.grid.minor = element_line( colour = "seagreen", size = 1.5), axis.line.x = element_line( colour = "deeppink", size = 3.5, lineend = "butt"), axis.line.y = element_line( colour = "deeppink", size = 3.5), axis.title.x = element_text( family = "Comic Sans MS", size = 30), axis.title.y = element_text( family = "Comic Sans MS", size = 30))
my_plot + my_theme
scale_*()
my_plot
scale_x_continuous()
my_plot + scale_x_continuous(limits = c(1, 30))
scale_x_reverse()
my_plot + scale_x_reverse()
scale_color_hue()
my_plot + scale_colour_hue(h = c(160, 260))
scale_size()
my_plot + scale_size(range = c(1, 15))
# Speichere plotspretty <- my_plotugly <- my_plot + my_theme
pretty + ugly
# Speichere plotspretty <- my_plotugly <- my_plot + my_theme
pretty | ugly + pretty
# Speichere plotspretty <- my_plotugly <- my_plot + my_theme
(pretty+pretty) / (pretty+pretty)
# Speichere plotspretty <- my_plotugly <- my_plot + my_theme
(pretty+pretty) / (pretty+pretty) & my_theme
# Speichere plotspretty <- my_plotugly <- my_plot + my_theme
(pretty+pretty) / (pretty+pretty) + plot_annotation(tag_levels = "A") & theme(legend.position = "none")
ggsave()
# Create plotmy_plot <- ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point() + mytheme# Save "my_plot.pdf"ggsave(filename = "my_plot", plot = my_plot, device = "pdf", path = "figures", width = 6, height = 4)
ggsave()
# Create plotmy_plot <- ggplot(data = mpg, aes(x = displ, y = hwy)) + geom_point() + mytheme# Save "my_plot.pdf"ggsave(filename = "my_plot", plot = my_plot, device = "png", path = "figures", width = 6, height = 4)
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |