Objectives: How does risk preference change across the life span? We address this question by conducting a coordinated analysis to obtain the first meta-analytic estimates of adult longitudinal age differences in risk-taking propensity in different domains.
Methods: We report results from 26 longitudinal samples (12 panels; 187,733 unique respondents; 19 countries) covering general and domain-specific risk-taking propensity (financial, driving, recreational, occupational, health) across three or more waves.
Results: Results revealed a negative relation between age and both general and domain-specific risk-taking propensity. Furthermore, females consistently reported lower levels of risk taking across the life span than males in all domains but there is little support for the idea of an age by gender interaction. Although we found evidence of systematic and universal age differences, we also detected considerable heterogeneity across domains and samples.
Discussion: Our work suggests a need to understand the nature of heterogeneity of age differences in risk-taking propensity and recommends the use of domain-specific and population estimates for applications interested in modeling heterogeneity in risk preference for economic and policy-making purposes.
This website contains results from all analyses conducted for the manuscript entitled “Life-course trajectories of risk-taking propensity: A coordinated analysis of longitudinal studies”. This document is organized by different domains of risk-taking propensity, including general, financial, driving, recreational, occupational, health and social domains. For each risk-taking propensity, we created 7 models, including intercept-only model (M1), fixed-effect model (M2), linear model (M3), linear with gender model (M4), linear with gender interaction model (M5), quadratic model (M6) and quadratic with gender model (M7), and provided a table summarizing individual study model results, the meta-analytic results and trajectory plots. We also tested individual predictors that are not included in the simple trajectory model in meta-regression: continent, mean age, scale range and survey year. The results from these models are available below. The code used to compile this file is available in the Github repository (https://github.com/cdsbasel/ageriskmeta). We provide a supplemental pdf file detailing all items and associated scales for each panel.
Figure: Total number of observations by sample.
Figure: Histogram of age distributions (all observations) by sample.
This section offers a detailed overview of the different samples included in the analyses of the paper Life-course trajectories of risk-taking propensity: A coordinated analysis of longitudinal studies.
Each panel is described in a separate tab. We include the following:
Panel name: Full name of the panel.
Description: This is a general description of the objectives of the panel.
Country/Countries: Country or countries in which data are collected.
Waves: Waves available in the raw data set (not all waves were necessarily included in the data analysis as not every wave had collected data on the variables of interest)
Data collection period: Data collection period of the waves available in the raw data set.
Dataset(s) version number/name: Version number(s) or name(s) or raw dataset(s).
Data access: Link to directly access or request access to the raw dataset(s).
Age distribution: The density of each age and the number of observations in each age-bin(s).
Risk-taking propensity density: The raw score
and standard Z-score risk-taking propensity density in every domain(s).
Panel Name: DNB Household Survey (DHS)
Description: The DNB Household Survey, undertaken by CentERdata at Tilburg University since 1993, provides annual financial information on 2,000 Dutch households. DNB Household Survey topics include: work, pensions, accommodation, mortgages, income, assets, liabilities, health, perception of personal financial situation and perception of risks.
More information at: https://www.eui.eu/Research/Library/ResearchGuides/Economics/Statistics/DataPortal/DNB
Country/Countries: Netherlands
Waves: 1993-2021
Data collection period: 1993-2021
Dataset(s) version number/name: NA
Data access: https://statements.centerdata.nl/
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
Financial
Panel Name: Preference Parameters Study (GCOE) Japan Sample
Description: The Preference Parameters Study of Osaka University is an extensive panel study in 4 different countries (Japan, United States, China and India). It aims to calculate parameters of preferences defining utility function; time preference, risk aversion, habit formation, externality, as well as sociodemographic characteristics. In China and India, surveys were conducted separately in urban and rural areas.
The panel survey in Japan has been conducted annually since 2003 using a random sample drawn from men and women aged 20-69 years old by a self-administered placement method. Fresh samples were selected and added in respondents to the survey for wave 2004, 2006 and 2009.
More information at: https://www.iser.osaka-u.ac.jp/survey_data/eng_panelsummary.html
Country/Countries: Japan
Waves: 2004-2010
Data collection period: 2003-2018
Dataset(s) version number/name: NA
Data access: https://www.iser.osaka-u.ac.jp/survey_data/eng_application.html
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Panel Name: Preference Parameters Study (GCOE) USA Sample
Description: The Preference Parameters Study of Osaka University is an extensive panel study in 4 different countries (Japan, United States, China and India). It aims to calculate parameters of preferences defining utility function; time preference, risk aversion, habit formation, externality, as well as sociodemographic characteristics. In China and India, surveys were conducted separately in urban and rural areas.
The panel survey for the GCOE USA sample has been conducted annually since 2005 using a random sample drawn from men and women aged 18-99 years old by a self-administered placement method. Fresh samples were selected and added in respondents to the survey for wave 2007, 2008 and 2009.
More information at: https://www.iser.osaka-u.ac.jp/survey_data/eng_panelsummary.html
Country/Countries: United States
Waves: 2005-2010
Data collection period: 2005-2013
Dataset(s) version number/name: NA
Data access: https://www.iser.osaka-u.ac.jp/survey_data/eng_application.html
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Panel Name: German Longitudinal Election Study
Description: The German Longitudinal Election Study (GLES) is the central survey program in Germany for the continuous collection and provision of high-quality data for national and international election research. The methodologically diverse surveys of the GLES make it possible to investigate the political attitudes and behaviour of voters and candidates. Since its foundation, the GLES has been carried out in close cooperation between the German Society for Electoral Studies (DGfW) and GESIS – Leibniz Institute for the Social Sciences.
More information at: https://gles-en.eu/
Country/Countries: Germany
Waves: wave 1-wave 15
Data collection period: 2016-2021
Dataset(s) version number/name: NA
Data access: https://search.gesis.org/research_data/ZA6838
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Panel Name: Household, Income and Labour Dynamics in Australia (HILDA)
Description: The Household, Income and Labour Dynamics in Australia (HILDA) Survey is a household-based panel study that collects information about economic and personal well-being, labour market dynamics and family life of participants. Since 2001, the study has been following more than 17,000 Australian participants each year.
More information at: https://melbourneinstitute.unimelb.edu.au/hilda
Country/Countries: Australia
Waves: Wave I - Wave 19
Data collection period: 2001-present
Dataset(s) version number/name: NA
Data access: https://melbourneinstitute.unimelb.edu.au/hilda/for-data-users
Age distribution Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
Financial
Panel Name: Health and Retirement Study (HRS)
Description: The Health and Retirement Study (HRS) is a longitudinal panel study that surveys a representative sample of approximately 20,000 people in America. The target population for the first wave of the HRS was adults residing in households in the contiguous United States born between 1931 and 1941 (i.e., those who were between the ages of 51–61 in 1992 when the study began). One particular strength of the HRS sample design is the use of a steady-state sampling design: a new cohort of individuals age 51–56 is added every 6 years. Individuals and their spouses or partners are followed until their death. Data have been collected biannually since 1992.
More information at: https://hrs.isr.umich.edu/about
Country/Countries: United States
Waves: 2014-2020
Data collection period: 1984-present
Dataset(s) version number/name: Core Waves 1992-2020
Data access: https://hrsdata.isr.umich.edu/data-products/public-survey-data
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Driving
Financial
Recreational
Occupational
Health
Panel Name: Life in Kyrgyzstan (LIKS)
Description: The “Life in Kyrgyzstan” Study is a longitudinal survey of households and individuals in Kyrgyzstan. It tracks the same 3,000 households and 8,000 individuals over time in all seven Kyrgyz regions (oblasts) and the two cities of Bishkek and Osh. The data are representative nationally and at the regional level (East, West, North, South). The survey interviews all adult household members about household demographics, assets, expenditure, migration, employment, agricultural markets, shocks, social networks, subjective well-being, and many other topics. Some of these topics are addressed in each wave while other topics are only addressed in selected waves. All members of the households in 2010 are tracked for each wave and new household members are added to the survey and tracked as well. The survey was first conducted in 2010 and it has been repeated four times in 2011, 2012, 2013 and 2016. The sixth wave of the LiK Study was conducted during November 2019-February 2020.
More information at: https://lifeinkyrgyzstan.org/about/
Country/Countries: Kyrgyzstan
Waves: 2010, 2011, 2012, 2013, 2016
Data collection period: 2010-present
Dataset(s) version number/name: NA
Data access: https://lifeinkyrgyzstan.org/data-access/
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Panel Name: Panel on Household Finances (PHF)
Description: The German Panel on Household Finances (PHF) is a panel survey on household finance and wealth in Germany, covering the balance sheet, pension, income, work life and other demographic characteristics of private households living in Germany. The first wave of the PHF was carried out in 2010/2011, the second and third wave in 2014 and 2017, respectively. In the first wave, around 3,500 randomly selected households participated, from which about 2,200 also participated in the second wave. The fourth wave was scheduled to start in spring 2021.
More information at: https://www.bundesbank.de/en/bundesbank/research/panel-on-household-finances
Country/Countries: Germany
Waves: Wave 1-Wave 3
Data collection period: 2010-present
Dataset(s) version number/name: NA
Data access: https://www.bundesbank.de/en/bundesbank/research/panel-on-household-finances/data-access-and-data-protection
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Financial
Panel Name: Sparen und Altersvorsorge in Deutschland (SAVE)
Description: The Sparen und Altersvorsorge in Deutschland (SAVE) is a representative, longitudinal study on households’ financial behavior with a special focus on savings and old-age provision. SAVE collected data on households’ financial structure and relevant socio- and psychological aspects between 2001 and 2013.
More information at: https://www.mpisoc.mpg.de/en/social-policy-mea/research/save-2001-2013/
Country/Countries: Germany
Waves: 2001-2013
Data collection period: 2001-2013
Dataset(s) version number/name: NA
Data access: https://dbk.gesis.org/dbksearch/GDESC2.asp?no=0014&search=save&search2=&DB=d&tab=0¬abs=&nf=1&af=&ll=10
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
Driving
Financial
Recreational
Occupational
Health
Panel Name: German Socio-Economic Panel (SOEP)
Description: The Socio-Economic Panel (SOEP) is one of the largest and longest-running multidisciplinary household surveys worldwide. Every year, approximately 30,000 people in 15,000 households are interviewed for the SOEP study. The SOEP is also a research-driven infrastructure based at DIW Berlin. The SOEP team prepares survey data for use by researchers around the globe, and team members use the data in research on various topics. Studies based on SOEP data examine diverse aspects of societal change.
More information at: https://www.diw.de/en/diw_01.c.600489.en/about_us.html#c_624242
Country/Countries: Germany
Waves: 2004-2019
Data collection period: 1984-present
Dataset(s) version number/name: SOEP-Core v36
Data access: https://www.diw.de/sixcms/detail.php?id=diw_01.c.814095.en
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Driving
Financial
Recreational
Occupational
Health
Social
Panel Name: Understanding America Study
Description: The Understanding America Study (UAS) is a panel of households at the University of Southern California (USC) of approximately 9,500 respondents representing the entire United States. The study is an ‘Internet Panel,’ which means that respondents answer our surveys on a computer, tablet, or smart phone, wherever they are and whenever they wish to participate.
More information at: https://uasdata.usc.edu/index.php
Country/Countries: United States
Waves: wave 1-wave 4
Data collection period: 2015-2021
Dataset(s) version number/name: NA
Data access: https://uasdata.usc.edu/index.php
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
Panel Name: UK Household Longitudinal Survey (Understanding Society) (USoc)
Description: The UK Household Longitudinal Study/Understanding Society (USoc) is built on the British Household Panel Survey (BHPS), which ran from 1991-2009 and had around 10,000 households in it. Understanding Society started in 2009 and interviewed around 40,000 households, including around 8,000 of the original BHPS households.The USoc examines how life in the UK is changing and what stays the same over many years and includes questions on various topics including social, economic and behavioral factors. Interviews are held with each member of the household in order to examine how different generations experience life in the UK.
More information at: https://www.understandingsociety.ac.uk/about/about-the-study
Country/Countries: United Kingdom
Waves: 2008, 2013, 2014
Data collection period: Waves 1-11, 2008-2018
Dataset(s) version number/name: Understanding Society: Innovation Panel
Data access: https://www.understandingsociety.ac.uk/documentation/access-data
Age distribution: Left plot: density plot for age
distribution; Right plot: histogram of age distributions (all
observations)
Risk-taking propensity density: Left plot: density
plot for raw risk-taking score; Right plot: density plot for
z-transformed risk-taking score
General
This section offers a detailed overview of the 9 different models included in the multilevel analysis in the paper Life-course trajectories of risk-taking propensity: A coordinated analysis of longitudinal studies.
Each model is described in a separate tab. We include the following:
Model name: General name of model
Description: This is a general description of the model, including some details of the model
Analysis: The code to run in R and interpret the
model, along with the annotations the meaning of each part of the code.
Model name: Intercept-only model, also called unconditional model.
Description: In the unconditional model, only the dependent variable and the grouping variable(s) (e.g., subject ID) are entered. No predictors are entered thus the model is not “conditioned” upon any predictor variables. This intercept-only model is the first step in conducting multilevel modeling, aiming to make sure multilevel modeling is appropriate in the first place.
Analysis: Model <- lmer (risk ~ 1 + (1|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”.
lmer: This is the command to test a mixed linear model using lme4.
risk ~ 1: Specifies an unconditional model in the form DV~IV. When there are no predictors, 1 is entered in the IV’s place. In our model, risk is the DV, representing the risk-taking propensity.
1|subject: Specifies that level-1 observations are grouped by the level-2 variable called “subject”, representing the subjects’ ID number.
data = DATA: Specifies that the variables (e.g., risk, subject ID) are in a dataset called “DATA”.
Model name: Fixed-effect model, also called age fixed-effect model.
Description: After determining that a multilevel model is appropriate, the next step is to begin to add level-1 predictors. Within multilevel modeling of real-time monitoring data, level-1 is almost always the “observation” level. In our analysis, the level one predictor is “age”. In the fixed-effect model, we regard age as a predictor but did not consider differences across participants, so called fixed-effect model.
Analysis: Model <- lmer (risk ~ age + (1|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”.
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age: Formula that lme4 will process, specified in the form DV~IV. In our model, age is not the raw age. We centered the age variable to a reference age (50 years old) and standardized the age variable to decades by dividing it by 10, then use the transformed age in our model.
1|subject: Specifies that level-1 observations are grouped by the level-2 variable called “subject”, representing the subjects’ ID number.
data = DATA: Specifies that the variables (e.g., risk, subject ID) are in a dataset called “DATA”.
Model name: Linear model, also called age fixed- and random-effects model effects model
Description: In the linear model, we regard age as a predictor and also include differences across participants, so in turn, this model included age both as a fixed and a random slope.
Analysis: Model <- lmer (risk ~ age + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age: Formula that lme4 will process, specified in the form DV~IV, the independent variable in the model is centered and standardized age.
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, age, subject ID) are in a dataset called “DATA”
Model name: Linear with gender model, also called age fixed- and random-effects effects model with gender
Description: The next step involves entering level-2 effects, although it is not always necessary to take this piecewise approach testing a level-1-effects-only model first. A model with level-2 variables should only be used when the theoretical conceptualization of the model necessitates it and there is sufficient power to do so. In this model, we are interested in adjusting for the effect of gender, so enter gender as a level-2 predictor. In this way, we coded the relation between inter-individual differences in the change trajectories and the time-invariant characteristic (gender) of the individual to compare whether age is associated with risk-taking propensity in males and females in same manner.
Analysis: Model <- lmer (risk ~ age + gender + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”.
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age + gender: Formula that lme4 will process, specified in the form DV~IV1+IV2, the first independent variable in the model is level-1 predictor (i.e., centered and standardized age), and the second independent variable is level-2 predictor(i.e.,gender).
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, age, gender, subject ID) are in a dataset called “DATA”
Model name: Linear with gender interaction model, also called age fixed- and random- effects model with gender, including an age by gender interaction
Description: This model further included an age by gender interaction based on previous model.
Analysis: Model <- lmer (risk ~ age + age\(\times\)gender + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age + age\(\times\)gender: Formula that lme4 will process, specified in the form DV~IV1+IV2, the first independent variable in the model is level-1 predictor (i.e., centered and standardized age), and the second independent variable is the interaction between age and gender.
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, age, gender, subject ID) are in a dataset called “DATA”
Model name: Quadratic model, also called age quadratic growth model
Description: we fit quadratic growth models to assess non-linear change. We did this by squaring age variable and entering this into a model.
Analysis: Model <- lmer (risk ~ age + I(\(age^2\)) + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age + I(\(age^2\)): Formula that lme4 will process, specified in the form DV~IV1+IV2, the first independent variable in the model is level-1 predictor (i.e., centered and standardized age), and the second independent variable is quadratic age.
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, subject ID) are in a dataset called “DATA”
Model name: Quadratic with gender model, also called age quadratic growth model with gender.
Description: We added gender variable into quadratic growth model to assess potential age differences in the quadratic trajectories.
Analysis: Model <- lmer (risk ~ age + I(\(age^2\)) + gender + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age + I(\(age^2\)) + gender: Formula that lme4 will process, specified in the form DV~IV1+IV2+IV3, the first independent variable in the model is level-1 predictor (i.e., centered and standardized age), the second independent variable is quadratic age, and the third independent variable is level-2 predictor (i.e.,gender).
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, subject ID) are in a dataset called “DATA”
Model name: Linear with gender and age group model, also called age fixed and random effects model with gender and dummy cohort
Description: This model further included age group based on previous linear with gender model.
Analysis: Model <- lmer (risk ~ age + gender + age group + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age + gender + age group: Formula that lme4 will process, specified in the form DV~IV1+IV2+IV3, the first independent variable in the model is level-1 predictor (i.e., centered and standardized age), the second independent variable is level-2 predictor(i.e.,gender), and the third independent variable is age group (age at first assessment was also dummy coded as below or over 60 years old).
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, age, gender, subject ID) are in a dataset called “DATA”
Model name: Linear with gender and age group interaction model, also called age fixed and random effects model with gender and dummy cohort, and including interaction
Description: This model further included an age by gender by age group interaction based on previous linear with gender and age group model.
Analysis: Model <- lmer (risk ~ age + gender + age group + age × gender × age group + (1+age|subject), data = DATA)
Model: Tells R to save the output of the analyses to an object called “Model”
lmer: This is the command to test a mixed linear model using lme4.
risk ~ age + gender + age group + age × gender × age group: Formula that lme4 will process, specified in the form DV~IV1+IV2+IV3+IV4, the first independent variable in the model is level-1 predictor (i.e., centered and standardized age), the second independent variable is level-2 predictor(i.e.,gender), the third independent variable is age group (age at first assessment was also dummy coded as below or over 60 years old), and the fourth independent variable is the interaction between age, gender and age group.
1+age|subject: Specifies that the model include not only age fixed effect, but also age random effect.
data = DATA: Specifies that the variables (e.g., risk, age, gender, subject ID) are in a dataset called “DATA”
Models results:
Models results:
Models results:
Figure: Age trajectories of general risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Models results:
Figure: Age trajectories of general risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of general risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interaction model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of general risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of quadratic model results.
Models results:
Figure: Age trajectories of general risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of quadratic with gender model results. Solid line = female, dotted line = male.
Models results:
Models results:
Models results:
Figure: Age trajectories of financial risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Models results:
Figure: Age trajectories of financial risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of financial risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interaction model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of financial risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of quadratic model results.
Models results:
Figure: Age trajectories of financial risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of quadratic with gender model results. Solid line = female, dotted line = male.
Models results:
Models results:
Models results:
Figure: Age trajectories of driving risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Models results:
Figure: Age trajectories of driving risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of driving risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interation model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of driving risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of quadratic model results.
Models results:
Figure: Age trajectories of driving risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of quadratic with gender model results. Solid line = female, dotted line = male.
Models results:
Models results:
Models results:
Figure: Age trajectories of recreational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Models results:
Figure: Age trajectories of recreational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of recreational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interaction model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of recreational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of quadratic model results.
Models results:
Figure: Age trajectories of recreational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of quadratic with gender model results. Solid line = female, dotted line = male.
Models results:
Models results:
Models results:
Figure: Age trajectories of occupational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Models results:
Figure: Age trajectories of occupational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of occupational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interaction model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of occupational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of quadratic model results.
Models results:
Figure: Age trajectories of occupational risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of quadratic with gender model results. Solid line = female, dotted line = male.
Models results:
Models results:
Models results:
Figure: Age trajectories of health risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Models results:
Figure: Age trajectories of health risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of health risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interaction model results. Solid line = female, dotted line = male.
Models results:
Figure: Age trajectories of health risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of quadratic model results.
Models results:
Figure: Age trajectories of health risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of quadratic with gender model results. Solid line = female, dotted line = male.
Meta-analysis:
ICC’s results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.8596 -9.7191 -5.7191 -5.5602 -3.3191
##
## tau^2 (estimated amount of total heterogeneity): 0.0174 (SE = 0.0087)
## tau (square root of estimated tau^2 value): 0.1317
## I^2 (total heterogeneity / total variability): 99.88%
## H^2 (total variability / sampling variability): 864.64
##
## Test for Heterogeneity:
## Q(df = 8) = 6710.5511, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.4611 0.0440 10.4756 <.0001 0.3748 0.5474 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year, survey year):
ICC’s
results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.6910 -5.3820 6.6180 2.9357 90.6180
##
## tau^2 (estimated amount of residual heterogeneity): 0.0152 (SE = 0.0108)
## tau (square root of estimated tau^2 value): 0.1232
## I^2 (residual heterogeneity / unaccounted variability): 99.73%
## H^2 (unaccounted variability / sampling variability): 374.51
## R^2 (amount of heterogeneity accounted for): 12.58%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 1867.6928, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 5.1278, p-val = 0.2744
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.9174 20.1811 -0.0455 0.9637 -40.4717 38.6369
## continentEurope 0.1699 0.1172 1.4497 0.1471 -0.0598 0.3995
## continentNorth America 0.0307 0.1380 0.2227 0.8238 -0.2397 0.3012
## mean.age 0.0073 0.0077 0.9448 0.3448 -0.0078 0.0223
## Survey.year 0.0005 0.0101 0.0453 0.9639 -0.0193 0.0202
##
## intrcpt
## continentEurope
## continentNorth America
## mean.age
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 14.4883 -28.9767 -24.9767 -24.8178 -22.5767
##
## tau^2 (estimated amount of total heterogeneity): 0.0014 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0372
## I^2 (total heterogeneity / total variability): 98.28%
## H^2 (total variability / sampling variability): 58.08
##
## Test for Heterogeneity:
## Q(df = 8) = 282.2381, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0745 0.0127 -5.8718 <.0001 -0.0994 -0.0496 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.8649 -13.7298 -1.7298 -5.4121 82.2702
##
## tau^2 (estimated amount of residual heterogeneity): 0.0017 (SE = 0.0013)
## tau (square root of estimated tau^2 value): 0.0416
## I^2 (residual heterogeneity / unaccounted variability): 97.83%
## H^2 (unaccounted variability / sampling variability): 46.18
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 122.7787, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 2.8941, p-val = 0.5757
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.2997 6.8748 -0.0436 0.9652 -13.7742 13.1747
## continentEurope -0.0185 0.0402 -0.4601 0.6454 -0.0972 0.0602
## continentNorth America 0.0379 0.0470 0.8059 0.4203 -0.0542 0.1300
## mean.age -0.0005 0.0026 -0.1932 0.8468 -0.0056 0.0046
## Survey.year 0.0001 0.0034 0.0357 0.9716 -0.0066 0.0069
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 14.5790 -29.1579 -25.1579 -24.9991 -22.7579
##
## tau^2 (estimated amount of total heterogeneity): 0.0013 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0366
## I^2 (total heterogeneity / total variability): 98.19%
## H^2 (total variability / sampling variability): 55.30
##
## Test for Heterogeneity:
## Q(df = 8) = 262.8464, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0743 0.0125 -5.9356 <.0001 -0.0988 -0.0498 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.8815 -13.7631 -1.7631 -5.4453 82.2369
##
## tau^2 (estimated amount of residual heterogeneity): 0.0017 (SE = 0.0013)
## tau (square root of estimated tau^2 value): 0.0413
## I^2 (residual heterogeneity / unaccounted variability): 97.80%
## H^2 (unaccounted variability / sampling variability): 45.39
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 118.6682, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 2.8180, p-val = 0.5887
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.2418 6.8284 -0.0354 0.9718 -13.6252 13.1417
## continentEurope -0.0171 0.0399 -0.4273 0.6692 -0.0953 0.0612
## continentNorth America 0.0380 0.0467 0.8144 0.4154 -0.0535 0.1295
## mean.age -0.0004 0.0026 -0.1697 0.8653 -0.0055 0.0046
## Survey.year 0.0001 0.0034 0.0269 0.9785 -0.0066 0.0068
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 14.5510 -29.1019 -25.1019 -24.9431 -22.7019
##
## tau^2 (estimated amount of total heterogeneity): 0.0014 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0368
## I^2 (total heterogeneity / total variability): 98.26%
## H^2 (total variability / sampling variability): 57.35
##
## Test for Heterogeneity:
## Q(df = 8) = 254.0023, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0762 0.0126 -6.0688 <.0001 -0.1008 -0.0516 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.6990 -13.3980 -9.3980 -9.2391 -6.9980
##
## tau^2 (estimated amount of total heterogeneity): 0.0105 (SE = 0.0056)
## tau (square root of estimated tau^2 value): 0.1026
## I^2 (total heterogeneity / total variability): 97.93%
## H^2 (total variability / sampling variability): 48.28
##
## Test for Heterogeneity:
## Q(df = 8) = 311.5390, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2550 0.0353 -7.2306 <.0001 -0.3241 -0.1859 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.8461 -13.6922 -1.6922 -5.3744 82.3078
##
## tau^2 (estimated amount of residual heterogeneity): 0.0017 (SE = 0.0013)
## tau (square root of estimated tau^2 value): 0.0417
## I^2 (residual heterogeneity / unaccounted variability): 97.88%
## H^2 (unaccounted variability / sampling variability): 47.11
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 118.6800, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 2.7473, p-val = 0.6010
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.3818 6.8894 0.0554 0.9558 -13.1211 13.8847
## continentEurope -0.0162 0.0403 -0.4019 0.6878 -0.0951 0.0627
## continentNorth America 0.0390 0.0471 0.8270 0.4083 -0.0534 0.1313
## mean.age -0.0004 0.0026 -0.1412 0.8877 -0.0055 0.0048
## Survey.year -0.0002 0.0034 -0.0644 0.9486 -0.0070 0.0065
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.7567 -5.5133 6.4867 2.8045 90.4867
##
## tau^2 (estimated amount of residual heterogeneity): 0.0143 (SE = 0.0108)
## tau (square root of estimated tau^2 value): 0.1195
## I^2 (residual heterogeneity / unaccounted variability): 97.56%
## H^2 (unaccounted variability / sampling variability): 40.91
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 174.4329, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 1.9616, p-val = 0.7428
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 6.5924 19.7738 0.3334 0.7388 -32.1636 45.3483
## continentEurope 0.0790 0.1157 0.6831 0.4945 -0.1477 0.3058
## continentNorth America 0.1334 0.1352 0.9866 0.3238 -0.1316 0.3984
## mean.age 0.0028 0.0075 0.3682 0.7127 -0.0119 0.0175
## Survey.year -0.0035 0.0099 -0.3561 0.7217 -0.0229 0.0158
##
## intrcpt
## continentEurope
## continentNorth America
## mean.age
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 13.5147 -27.0293 -23.0293 -22.8704 -20.6293
##
## tau^2 (estimated amount of total heterogeneity): 0.0015 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0392
## I^2 (total heterogeneity / total variability): 96.71%
## H^2 (total variability / sampling variability): 30.36
##
## Test for Heterogeneity:
## Q(df = 8) = 130.5119, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0760 0.0136 -5.5711 <.0001 -0.1027 -0.0493 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.5649 -13.1298 -9.1298 -8.9709 -6.7298
##
## tau^2 (estimated amount of total heterogeneity): 0.0109 (SE = 0.0058)
## tau (square root of estimated tau^2 value): 0.1042
## I^2 (total heterogeneity / total variability): 97.51%
## H^2 (total variability / sampling variability): 40.21
##
## Test for Heterogeneity:
## Q(df = 8) = 277.5796, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2485 0.0359 -6.9308 <.0001 -0.3188 -0.1783 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 18.2503 -36.5006 -32.5006 -32.3417 -30.1006
##
## tau^2 (estimated amount of total heterogeneity): 0.0004 (SE = 0.0003)
## tau (square root of estimated tau^2 value): 0.0200
## I^2 (total heterogeneity / total variability): 80.53%
## H^2 (total variability / sampling variability): 5.14
##
## Test for Heterogeneity:
## Q(df = 8) = 36.2545, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0006 0.0079 0.0746 0.9405 -0.0150 0.0162
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.0989 -12.1979 -0.1979 -3.8801 83.8021
##
## tau^2 (estimated amount of residual heterogeneity): 0.0023 (SE = 0.0018)
## tau (square root of estimated tau^2 value): 0.0480
## I^2 (residual heterogeneity / unaccounted variability): 96.60%
## H^2 (unaccounted variability / sampling variability): 29.42
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 64.0577, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 2.3459, p-val = 0.6724
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -2.1548 7.9824 -0.2699 0.7872 -17.8000 13.4903
## continentEurope -0.0104 0.0468 -0.2224 0.8240 -0.1022 0.0813
## continentNorth America 0.0408 0.0546 0.7478 0.4546 -0.0662 0.1478
## mean.age 0.0003 0.0030 0.0955 0.9239 -0.0057 0.0062
## Survey.year 0.0010 0.0040 0.2562 0.7978 -0.0068 0.0088
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.6214 -5.2427 6.7573 3.0750 90.7573
##
## tau^2 (estimated amount of residual heterogeneity): 0.0153 (SE = 0.0115)
## tau (square root of estimated tau^2 value): 0.1236
## I^2 (residual heterogeneity / unaccounted variability): 97.43%
## H^2 (unaccounted variability / sampling variability): 38.86
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 168.7694, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 1.7510, p-val = 0.7814
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 4.9348 20.4474 0.2413 0.8093 -35.1413 45.0109
## continentEurope 0.0586 0.1197 0.4893 0.6246 -0.1761 0.2932
## continentNorth America 0.1181 0.1398 0.8445 0.3984 -0.1560 0.3921
## mean.age 0.0034 0.0078 0.4419 0.6585 -0.0118 0.0187
## Survey.year -0.0027 0.0102 -0.2644 0.7915 -0.0227 0.0173
##
## intrcpt
## continentEurope
## continentNorth America
## mean.age
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Mixed-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 9.2039 -18.4077 -6.4077 -10.0900 77.5923
##
## tau^2 (estimated amount of residual heterogeneity): 0.0002 (SE = 0.0003)
## tau (square root of estimated tau^2 value): 0.0156
## I^2 (residual heterogeneity / unaccounted variability): 61.40%
## H^2 (unaccounted variability / sampling variability): 2.59
## R^2 (amount of heterogeneity accounted for): 39.70%
##
## Test for Residual Heterogeneity:
## QE(df = 4) = 10.1736, p-val = 0.0376
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 6.6577, p-val = 0.1551
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 3.9868 3.1077 1.2829 0.1995 -2.1042 10.0777
## continentEurope -0.0207 0.0187 -1.1053 0.2690 -0.0573 0.0160
## continentNorth America -0.0065 0.0218 -0.2966 0.7668 -0.0492 0.0362
## mean.age -0.0012 0.0012 -0.9796 0.3273 -0.0036 0.0012
## Survey.year -0.0019 0.0016 -1.2543 0.2097 -0.0050 0.0011
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 11.1996 -22.3992 -18.3992 -18.8157 -14.3992
##
## tau^2 (estimated amount of total heterogeneity): 0.0013 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0361
## I^2 (total heterogeneity / total variability): 98.05%
## H^2 (total variability / sampling variability): 51.34
##
## Test for Heterogeneity:
## Q(df = 6) = 203.3042, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0709 0.0141 -5.0429 <.0001 -0.0985 -0.0433 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 18.0617 -36.1233 -32.1233 -32.5398 -28.1233
##
## tau^2 (estimated amount of total heterogeneity): 0.0001 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0.0115
## I^2 (total heterogeneity / total variability): 94.87%
## H^2 (total variability / sampling variability): 19.49
##
## Test for Heterogeneity:
## Q(df = 6) = 188.9191, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0029 0.0046 -0.6398 0.5223 -0.0119 0.0061
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.6899 -9.3799 2.6201 -5.2210 86.6201
##
## tau^2 (estimated amount of residual heterogeneity): 0.0005 (SE = 0.0006)
## tau (square root of estimated tau^2 value): 0.0225
## I^2 (residual heterogeneity / unaccounted variability): 91.82%
## H^2 (unaccounted variability / sampling variability): 12.23
## R^2 (amount of heterogeneity accounted for): 61.32%
##
## Test for Residual Heterogeneity:
## QE(df = 2) = 33.1374, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 12.4155, p-val = 0.0145
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 1.9123 3.8425 0.4977 0.6187 -5.6189 9.4436
## continentEurope -0.0186 0.0248 -0.7499 0.4533 -0.0673 0.0300
## continentNorth America 0.0536 0.0264 2.0306 0.0423 0.0019 0.1054 *
## mean.age 0.0003 0.0017 0.2017 0.8402 -0.0030 0.0037
## Survey.year -0.0010 0.0019 -0.5233 0.6008 -0.0048 0.0028
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.4460 -10.8920 1.1080 -6.7331 85.1080
##
## tau^2 (estimated amount of residual heterogeneity): 0.0002 (SE = 0.0003)
## tau (square root of estimated tau^2 value): 0.0155
## I^2 (residual heterogeneity / unaccounted variability): 94.87%
## H^2 (unaccounted variability / sampling variability): 19.48
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 2) = 41.5797, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 1.3110, p-val = 0.8595
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 2.6875 2.6245 1.0240 0.3058 -2.4565 7.8315
## continentEurope 0.0096 0.0168 0.5715 0.5677 -0.0233 0.0426
## continentNorth America 0.0122 0.0180 0.6759 0.4991 -0.0231 0.0474
## mean.age 0.0000 0.0010 0.0087 0.9931 -0.0020 0.0020
## Survey.year -0.0013 0.0013 -1.0242 0.3057 -0.0039 0.0012
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 11.5455 -23.0911 -19.0911 -19.5076 -15.0911
##
## tau^2 (estimated amount of total heterogeneity): 0.0012 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0340
## I^2 (total heterogeneity / total variability): 97.86%
## H^2 (total variability / sampling variability): 46.75
##
## Test for Heterogeneity:
## Q(df = 6) = 179.0346, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0732 0.0133 -5.5229 <.0001 -0.0992 -0.0472 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 18.7525 -37.5051 -33.5051 -33.9215 -29.5051
##
## tau^2 (estimated amount of total heterogeneity): 0.0001 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0.0102
## I^2 (total heterogeneity / total variability): 93.74%
## H^2 (total variability / sampling variability): 15.98
##
## Test for Heterogeneity:
## Q(df = 6) = 167.3903, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0019 0.0041 -0.4559 0.6485 -0.0099 0.0062
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.5505 -13.1010 -9.1010 -9.5174 -5.1010
##
## tau^2 (estimated amount of total heterogeneity): 0.0063 (SE = 0.0038)
## tau (square root of estimated tau^2 value): 0.0794
## I^2 (total heterogeneity / total variability): 97.19%
## H^2 (total variability / sampling variability): 35.57
##
## Test for Heterogeneity:
## Q(df = 6) = 180.0551, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2793 0.0306 -9.1233 <.0001 -0.3393 -0.2193 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.0916 -10.1833 1.8167 -6.0244 85.8167
##
## tau^2 (estimated amount of residual heterogeneity): 0.0003 (SE = 0.0004)
## tau (square root of estimated tau^2 value): 0.0180
## I^2 (residual heterogeneity / unaccounted variability): 87.94%
## H^2 (unaccounted variability / sampling variability): 8.29
## R^2 (amount of heterogeneity accounted for): 72.06%
##
## Test for Residual Heterogeneity:
## QE(df = 2) = 20.7121, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 16.8963, p-val = 0.0020
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 2.4163 3.1226 0.7738 0.4390 -3.7039 8.5366
## continentEurope -0.0145 0.0202 -0.7183 0.4726 -0.0542 0.0251
## continentNorth America 0.0550 0.0215 2.5536 0.0107 0.0128 0.0972 *
## mean.age 0.0000 0.0015 0.0339 0.9730 -0.0028 0.0029
## Survey.year -0.0012 0.0016 -0.8016 0.4228 -0.0043 0.0018
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.6374 -11.2748 0.7252 -7.1159 84.7252
##
## tau^2 (estimated amount of residual heterogeneity): 0.0002 (SE = 0.0002)
## tau (square root of estimated tau^2 value): 0.0140
## I^2 (residual heterogeneity / unaccounted variability): 93.92%
## H^2 (unaccounted variability / sampling variability): 16.44
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 2) = 33.8223, p-val < .0001
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 1.1502, p-val = 0.8862
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 2.0345 2.3814 0.8543 0.3929 -2.6330 6.7019
## continentEurope 0.0110 0.0153 0.7213 0.4707 -0.0189 0.0409
## continentNorth America 0.0105 0.0163 0.6447 0.5191 -0.0215 0.0425
## mean.age 0.0001 0.0009 0.0574 0.9543 -0.0018 0.0019
## Survey.year -0.0010 0.0012 -0.8561 0.3920 -0.0034 0.0013
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Mixed-Effects Model (k = 7; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.9042 -7.8084 4.1916 -3.6495 88.1916
##
## tau^2 (estimated amount of residual heterogeneity): 0.0009 (SE = 0.0011)
## tau (square root of estimated tau^2 value): 0.0295
## I^2 (residual heterogeneity / unaccounted variability): 76.88%
## H^2 (unaccounted variability / sampling variability): 4.33
## R^2 (amount of heterogeneity accounted for): 86.21%
##
## Test for Residual Heterogeneity:
## QE(df = 2) = 7.9230, p-val = 0.0190
##
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 32.6194, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 5.5331 5.5293 1.0007 0.3170 -5.3042 16.3703
## continentEurope 0.0086 0.0346 0.2485 0.8038 -0.0592 0.0763
## continentNorth America 0.1618 0.0389 4.1565 <.0001 0.0855 0.2381
## mean.age -0.0007 0.0021 -0.3067 0.7591 -0.0048 0.0035
## Survey.year -0.0029 0.0028 -1.0535 0.2921 -0.0083 0.0025
##
## intrcpt
## continentEurope
## continentNorth America ***
## mean.age
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
ICC’s results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 14.2930 -28.5861 -24.5861 -22.6972 -23.8361
##
## tau^2 (estimated amount of total heterogeneity): 0.0124 (SE = 0.0042)
## tau (square root of estimated tau^2 value): 0.1113
## I^2 (total heterogeneity / total variability): 99.39%
## H^2 (total variability / sampling variability): 164.07
##
## Test for Heterogeneity:
## Q(df = 19) = 2233.9788, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3620 0.0255 14.2218 <.0001 0.3121 0.4119 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
ICC’s results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 12.4877 -24.9753 -8.9753 -4.4558 27.0247
##
## tau^2 (estimated amount of residual heterogeneity): 0.0080 (SE = 0.0034)
## tau (square root of estimated tau^2 value): 0.0896
## I^2 (residual heterogeneity / unaccounted variability): 94.99%
## H^2 (unaccounted variability / sampling variability): 19.97
## R^2 (amount of heterogeneity accounted for): 35.18%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 384.3875, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 15.8044, p-val = 0.0148
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 9.6703 15.8163 0.6114 0.5409 -21.3290 40.6696
## continentEurope -0.0036 0.1106 -0.0321 0.9744 -0.2203 0.2132
## continentNorth America 0.4858 0.2236 2.1723 0.0298 0.0475 0.9240
## continentOceania -0.1805 0.2156 -0.8370 0.4026 -0.6032 0.2421
## mean.age -0.0211 0.0105 -2.0124 0.0442 -0.0417 -0.0006
## scale -0.0344 0.0250 -1.3765 0.1687 -0.0835 0.0146
## Survey.year -0.0039 0.0081 -0.4828 0.6292 -0.0197 0.0119
##
## intrcpt
## continentEurope
## continentNorth America *
## continentOceania
## mean.age *
## scale
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 32.0436 -64.0872 -60.0872 -58.1983 -59.3372
##
## tau^2 (estimated amount of total heterogeneity): 0.0017 (SE = 0.0006)
## tau (square root of estimated tau^2 value): 0.0411
## I^2 (total heterogeneity / total variability): 96.53%
## H^2 (total variability / sampling variability): 28.82
##
## Test for Heterogeneity:
## Q(df = 19) = 338.8796, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1131 0.0098 -11.4875 <.0001 -0.1324 -0.0938 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 21.6251 -43.2501 -27.2501 -22.7305 8.7499
##
## tau^2 (estimated amount of residual heterogeneity): 0.0017 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0409
## I^2 (residual heterogeneity / unaccounted variability): 90.37%
## H^2 (unaccounted variability / sampling variability): 10.38
## R^2 (amount of heterogeneity accounted for): 0.64%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 85.1619, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 5.7673, p-val = 0.4498
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 0.2386 7.2928 0.0327 0.9739 -14.0550 14.5321
## continentEurope -0.0085 0.0566 -0.1496 0.8811 -0.1195 0.1025
## continentNorth America 0.0271 0.1062 0.2558 0.7981 -0.1809 0.2352
## continentOceania -0.0015 0.1029 -0.0144 0.9885 -0.2032 0.2002
## mean.age -0.0042 0.0049 -0.8464 0.3973 -0.0138 0.0055
## scale -0.0014 0.0116 -0.1218 0.9031 -0.0241 0.0213
## Survey.year -0.0000 0.0037 -0.0107 0.9914 -0.0074 0.0073
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 31.7788 -63.5576 -59.5576 -57.6687 -58.8076
##
## tau^2 (estimated amount of total heterogeneity): 0.0018 (SE = 0.0006)
## tau (square root of estimated tau^2 value): 0.0420
## I^2 (total heterogeneity / total variability): 96.32%
## H^2 (total variability / sampling variability): 27.17
##
## Test for Heterogeneity:
## Q(df = 19) = 317.6677, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1133 0.0100 -11.3021 <.0001 -0.1329 -0.0936 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 21.1219 -42.2439 -26.2439 -21.7243 9.7561
##
## tau^2 (estimated amount of residual heterogeneity): 0.0019 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0436
## I^2 (residual heterogeneity / unaccounted variability): 91.80%
## H^2 (unaccounted variability / sampling variability): 12.19
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 108.6542, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 4.6630, p-val = 0.5877
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.0688 7.7515 -0.0089 0.9929 -15.2615 15.1240
## continentEurope -0.0018 0.0585 -0.0303 0.9759 -0.1164 0.1128
## continentNorth America 0.0200 0.1119 0.1784 0.8584 -0.1994 0.2393
## continentOceania 0.0130 0.1083 0.1199 0.9045 -0.1993 0.2253
## mean.age -0.0035 0.0052 -0.6833 0.4944 -0.0137 0.0066
## scale -0.0000 0.0123 -0.0026 0.9980 -0.0241 0.0241
## Survey.year 0.0001 0.0040 0.0222 0.9823 -0.0077 0.0079
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 32.6391 -65.2782 -61.2782 -59.3893 -60.5282
##
## tau^2 (estimated amount of total heterogeneity): 0.0016 (SE = 0.0006)
## tau (square root of estimated tau^2 value): 0.0400
## I^2 (total heterogeneity / total variability): 96.06%
## H^2 (total variability / sampling variability): 25.40
##
## Test for Heterogeneity:
## Q(df = 19) = 304.1419, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1141 0.0096 -11.9133 <.0001 -0.1329 -0.0954 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 14.8113 -29.6226 -25.6226 -23.7338 -24.8726
##
## tau^2 (estimated amount of total heterogeneity): 0.0113 (SE = 0.0040)
## tau (square root of estimated tau^2 value): 0.1064
## I^2 (total heterogeneity / total variability): 95.93%
## H^2 (total variability / sampling variability): 24.57
##
## Test for Heterogeneity:
## Q(df = 19) = 706.9393, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2752 0.0248 -11.0890 <.0001 -0.3239 -0.2266 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 21.9459 -43.8918 -27.8918 -23.3722 8.1082
##
## tau^2 (estimated amount of residual heterogeneity): 0.0017 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0408
## I^2 (residual heterogeneity / unaccounted variability): 90.90%
## H^2 (unaccounted variability / sampling variability): 10.99
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 98.3066, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 5.3049, p-val = 0.5053
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -3.5654 7.2772 -0.4899 0.6242 -17.8285 10.6977
## continentEurope -0.0031 0.0556 -0.0553 0.9559 -0.1120 0.1059
## continentNorth America 0.0279 0.1053 0.2647 0.7912 -0.1785 0.2343
## continentOceania -0.0021 0.1021 -0.0210 0.9832 -0.2023 0.1980
## mean.age -0.0052 0.0049 -1.0606 0.2889 -0.0148 0.0044
## scale -0.0026 0.0115 -0.2274 0.8201 -0.0253 0.0200
## Survey.year 0.0019 0.0037 0.5074 0.6119 -0.0054 0.0092
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 11.9102 -23.8205 -7.8205 -3.3009 28.1795
##
## tau^2 (estimated amount of residual heterogeneity): 0.0076 (SE = 0.0034)
## tau (square root of estimated tau^2 value): 0.0869
## I^2 (residual heterogeneity / unaccounted variability): 91.28%
## H^2 (unaccounted variability / sampling variability): 11.47
## R^2 (amount of heterogeneity accounted for): 33.20%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 124.7418, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 13.3016, p-val = 0.0385
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -21.4625 15.9141 -1.3487 0.1774 -52.6536 9.7285
## continentEurope 0.0415 0.1121 0.3704 0.7111 -0.1781 0.2612
## continentNorth America -0.1965 0.2234 -0.8792 0.3793 -0.6344 0.2415
## continentOceania 0.3441 0.2189 1.5718 0.1160 -0.0850 0.7731
## mean.age 0.0060 0.0108 0.5540 0.5796 -0.0152 0.0273
## scale 0.0037 0.0253 0.1476 0.8827 -0.0459 0.0534
## Survey.year 0.0103 0.0082 1.2688 0.2045 -0.0056 0.0263
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 27.3527 -54.7053 -50.7053 -48.8165 -49.9553
##
## tau^2 (estimated amount of total heterogeneity): 0.0027 (SE = 0.0010)
## tau (square root of estimated tau^2 value): 0.0517
## I^2 (total heterogeneity / total variability): 95.09%
## H^2 (total variability / sampling variability): 20.37
##
## Test for Heterogeneity:
## Q(df = 19) = 245.0096, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1321 0.0126 -10.4923 <.0001 -0.1568 -0.1074 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 10.4825 -20.9650 -16.9650 -15.0761 -16.2150
##
## tau^2 (estimated amount of total heterogeneity): 0.0147 (SE = 0.0058)
## tau (square root of estimated tau^2 value): 0.1213
## I^2 (total heterogeneity / total variability): 94.11%
## H^2 (total variability / sampling variability): 16.97
##
## Test for Heterogeneity:
## Q(df = 19) = 510.6203, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3215 0.0302 -10.6565 <.0001 -0.3807 -0.2624 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 32.8217 -65.6433 -61.6433 -59.7544 -60.8933
##
## tau^2 (estimated amount of total heterogeneity): 0.0009 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0.0307
## I^2 (total heterogeneity / total variability): 77.94%
## H^2 (total variability / sampling variability): 4.53
##
## Test for Heterogeneity:
## Q(df = 19) = 69.6499, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0301 0.0090 3.3378 0.0008 0.0124 0.0477 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 18.4470 -36.8940 -20.8940 -16.3745 15.1060
##
## tau^2 (estimated amount of residual heterogeneity): 0.0027 (SE = 0.0013)
## tau (square root of estimated tau^2 value): 0.0522
## I^2 (residual heterogeneity / unaccounted variability): 87.74%
## H^2 (unaccounted variability / sampling variability): 8.16
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 70.0632, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 5.7367, p-val = 0.4533
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -4.6960 9.3838 -0.5004 0.6168 -23.0879 13.6959
## continentEurope -0.0007 0.0747 -0.0097 0.9923 -0.1471 0.1456
## continentNorth America 0.0880 0.1372 0.6414 0.5213 -0.1809 0.3570
## continentOceania 0.0112 0.1334 0.0838 0.9332 -0.2503 0.2726
## mean.age -0.0064 0.0063 -1.0117 0.3117 -0.0188 0.0060
## scale -0.0035 0.0149 -0.2373 0.8124 -0.0327 0.0256
## Survey.year 0.0025 0.0048 0.5165 0.6055 -0.0069 0.0119
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.5517 -13.1035 2.8965 7.4161 38.8965
##
## tau^2 (estimated amount of residual heterogeneity): 0.0152 (SE = 0.0074)
## tau (square root of estimated tau^2 value): 0.1232
## I^2 (residual heterogeneity / unaccounted variability): 84.83%
## H^2 (unaccounted variability / sampling variability): 6.59
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 64.5868, p-val < .0001
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 5.0431, p-val = 0.5383
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -20.4612 22.5589 -0.9070 0.3644 -64.6759 23.7535
## continentEurope 0.0650 0.1953 0.3327 0.7394 -0.3178 0.4478
## continentNorth America 0.0371 0.3370 0.1102 0.9123 -0.6234 0.6977
## continentOceania 0.3398 0.3304 1.0284 0.3038 -0.3078 0.9874
## mean.age -0.0004 0.0154 -0.0255 0.9797 -0.0306 0.0299
## scale -0.0003 0.0358 -0.0095 0.9924 -0.0705 0.0698
## Survey.year 0.0100 0.0116 0.8664 0.3863 -0.0126 0.0327
##
## intrcpt
## continentEurope
## continentNorth America
## continentOceania
## mean.age
## scale
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Mixed-Effects Model (k = 20; tau^2 estimator: REML)
##
## tau^2 (estimated amount of residual heterogeneity): 0.0009 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0306
## I^2 (residual heterogeneity / unaccounted variability): 57.92%
## H^2 (unaccounted variability / sampling variability): 2.38
## R^2 (amount of heterogeneity accounted for): 0.31%
##
## Test for Residual Heterogeneity:
## QE(df = 13) = 30.1176, p-val = 0.0045
##
## Test of Moderators (coefficients 2:7):
## QM(df = 6) = 6.1662, p-val = 0.4048
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt 2.0184 6.3668 0.3170 0.7512 -10.4604 14.4971
## continentEurope -0.0126 0.0716 -0.1760 0.8603 -0.1530 0.1278
## continentNorth America -0.0929 0.1033 -0.8997 0.3683 -0.2954 0.1095
## continentOceania -0.0469 0.1047 -0.4479 0.6542 -0.2520 0.1583
## mean.age 0.0010 0.0046 0.2246 0.8223 -0.0081 0.0101
## scale -0.0001 0.0101 -0.0103 0.9918 -0.0199 0.0197
## Survey.year -0.0010 0.0033 -0.3087 0.7576 -0.0074 0.0054
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 15.3540 -30.7079 -26.7079 -25.2918 -25.7079
##
## tau^2 (estimated amount of total heterogeneity): 0.0040 (SE = 0.0022)
## tau (square root of estimated tau^2 value): 0.0632
## I^2 (total heterogeneity / total variability): 96.10%
## H^2 (total variability / sampling variability): 25.64
##
## Test for Heterogeneity:
## Q(df = 15) = 79.9806, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1138 0.0198 -5.7362 <.0001 -0.1527 -0.0749 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 37.1833 -74.3665 -70.3665 -68.9504 -69.3665
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0.0163
## I^2 (total heterogeneity / total variability): 89.50%
## H^2 (total variability / sampling variability): 9.52
##
## Test for Heterogeneity:
## Q(df = 15) = 306.3181, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0017 0.0052 0.3379 0.7354 -0.0084 0.0119
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 8.5992 -17.1985 -3.1985 -1.0804 52.8015
##
## tau^2 (estimated amount of residual heterogeneity): 0.0063 (SE = 0.0042)
## tau (square root of estimated tau^2 value): 0.0792
## I^2 (residual heterogeneity / unaccounted variability): 68.40%
## H^2 (unaccounted variability / sampling variability): 3.16
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 10) = 29.8655, p-val = 0.0009
##
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 2.1895, p-val = 0.8223
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -5.2817 24.9122 -0.2120 0.8321 -54.1087 43.5452
## continentEurope -0.1347 0.4404 -0.3058 0.7598 -0.9978 0.7285
## continentNorth America -0.3808 1.4262 -0.2670 0.7895 -3.1761 2.4145
## mean.age 0.0025 0.0287 0.0873 0.9304 -0.0537 0.0588
## scale 0.0418 0.1255 0.3330 0.7391 -0.2042 0.2879
## Survey.year 0.0025 0.0124 0.1981 0.8430 -0.0219 0.0268
##
## intrcpt
## continentEurope
## continentNorth America
## mean.age
## scale
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 24.4723 -48.9446 -34.9446 -32.8265 21.0554
##
## tau^2 (estimated amount of residual heterogeneity): 0.0002 (SE = 0.0002)
## tau (square root of estimated tau^2 value): 0.0145
## I^2 (residual heterogeneity / unaccounted variability): 51.17%
## H^2 (unaccounted variability / sampling variability): 2.05
## R^2 (amount of heterogeneity accounted for): 21.15%
##
## Test for Residual Heterogeneity:
## QE(df = 10) = 20.1752, p-val = 0.0276
##
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 6.1951, p-val = 0.2877
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.7246 4.7908 -0.1512 0.8798 -10.1145 8.6653
## continentEurope -0.0537 0.0959 -0.5595 0.5758 -0.2417 0.1344
## continentNorth America -0.2780 0.3099 -0.8970 0.3697 -0.8854 0.3294
## mean.age 0.0051 0.0063 0.8166 0.4142 -0.0072 0.0174
## scale 0.0270 0.0272 0.9927 0.3208 -0.0263 0.0804
## Survey.year 0.0002 0.0024 0.0705 0.9438 -0.0045 0.0049
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 15.2625 -30.5250 -26.5250 -25.1089 -25.5250
##
## tau^2 (estimated amount of total heterogeneity): 0.0045 (SE = 0.0024)
## tau (square root of estimated tau^2 value): 0.0669
## I^2 (total heterogeneity / total variability): 96.63%
## H^2 (total variability / sampling variability): 29.65
##
## Test for Heterogeneity:
## Q(df = 15) = 112.2968, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1293 0.0206 -6.2818 <.0001 -0.1697 -0.0890 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 37.5936 -75.1871 -71.1871 -69.7710 -70.1871
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0.0159
## I^2 (total heterogeneity / total variability): 89.29%
## H^2 (total variability / sampling variability): 9.34
##
## Test for Heterogeneity:
## Q(df = 15) = 328.8947, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0051 0.0051 1.0165 0.3094 -0.0048 0.0151
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 11.5046 -23.0092 -19.0092 -17.5931 -18.0092
##
## tau^2 (estimated amount of total heterogeneity): 0.0114 (SE = 0.0045)
## tau (square root of estimated tau^2 value): 0.1070
## I^2 (total heterogeneity / total variability): 95.44%
## H^2 (total variability / sampling variability): 21.91
##
## Test for Heterogeneity:
## Q(df = 15) = 474.3101, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2794 0.0278 -10.0336 <.0001 -0.3340 -0.2248 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis with four moderators (continent, mean age,
scale range, survey year):
Age effect results
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 8.9676 -17.9351 -3.9351 -1.8170 52.0649
##
## tau^2 (estimated amount of residual heterogeneity): 0.0060 (SE = 0.0041)
## tau (square root of estimated tau^2 value): 0.0775
## I^2 (residual heterogeneity / unaccounted variability): 67.91%
## H^2 (unaccounted variability / sampling variability): 3.12
## R^2 (amount of heterogeneity accounted for): 0.00%
##
## Test for Residual Heterogeneity:
## QE(df = 10) = 29.5048, p-val = 0.0010
##
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 3.0443, p-val = 0.6931
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -8.7709 24.3956 -0.3595 0.7192 -56.5855 39.0436
## continentEurope -0.2329 0.4318 -0.5393 0.5897 -1.0792 0.6135
## continentNorth America -0.7127 1.3985 -0.5096 0.6103 -3.4538 2.0283
## mean.age 0.0072 0.0281 0.2572 0.7970 -0.0479 0.0624
## scale 0.0705 0.1231 0.5726 0.5669 -0.1708 0.3117
## Survey.year 0.0040 0.0122 0.3310 0.7406 -0.0198 0.0279
##
## intrcpt
## continentEurope
## continentNorth America
## mean.age
## scale
## Survey.year
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 24.6699 -49.3398 -35.3398 -33.2217 20.6602
##
## tau^2 (estimated amount of residual heterogeneity): 0.0002 (SE = 0.0002)
## tau (square root of estimated tau^2 value): 0.0145
## I^2 (residual heterogeneity / unaccounted variability): 51.68%
## H^2 (unaccounted variability / sampling variability): 2.07
## R^2 (amount of heterogeneity accounted for): 17.12%
##
## Test for Residual Heterogeneity:
## QE(df = 10) = 20.1742, p-val = 0.0276
##
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 5.7277, p-val = 0.3336
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -0.0274 4.7882 -0.0057 0.9954 -9.4120 9.3572
## continentEurope -0.0118 0.0954 -0.1240 0.9013 -0.1987 0.1751
## continentNorth America -0.1393 0.3081 -0.4523 0.6510 -0.7432 0.4645
## mean.age 0.0028 0.0062 0.4444 0.6567 -0.0095 0.0150
## scale 0.0147 0.0271 0.5439 0.5865 -0.0383 0.0678
## Survey.year -0.0001 0.0024 -0.0403 0.9678 -0.0048 0.0046
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Mixed-Effects Model (k = 16; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 10.2981 -20.5962 -6.5962 -4.4781 49.4038
##
## tau^2 (estimated amount of residual heterogeneity): 0.0052 (SE = 0.0028)
## tau (square root of estimated tau^2 value): 0.0724
## I^2 (residual heterogeneity / unaccounted variability): 86.16%
## H^2 (unaccounted variability / sampling variability): 7.23
## R^2 (amount of heterogeneity accounted for): 54.23%
##
## Test for Residual Heterogeneity:
## QE(df = 10) = 58.2006, p-val < .0001
##
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 18.7578, p-val = 0.0021
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## intrcpt -43.6669 22.4558 -1.9446 0.0518 -87.6794 0.3457
## continentEurope -0.9434 0.3539 -2.6658 0.0077 -1.6371 -0.2498
## continentNorth America -2.8568 1.1504 -2.4833 0.0130 -5.1116 -0.6021
## mean.age 0.0431 0.0229 1.8867 0.0592 -0.0017 0.0879
## scale 0.2158 0.1018 2.1207 0.0339 0.0164 0.4153
## Survey.year 0.0203 0.0112 1.8074 0.0707 -0.0017 0.0422
##
## intrcpt .
## continentEurope **
## continentNorth America *
## mean.age .
## scale *
## Survey.year .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
ICC’s results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.5189 -5.0379 -1.0379 -3.6516 10.9621
##
## tau^2 (estimated amount of total heterogeneity): 0.0047 (SE = 0.0047)
## tau (square root of estimated tau^2 value): 0.0683
## I^2 (total heterogeneity / total variability): 98.95%
## H^2 (total variability / sampling variability): 95.11
##
## Test for Heterogeneity:
## Q(df = 2) = 218.4022, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.4668 0.0397 11.7631 <.0001 0.3890 0.5446 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.8352 -9.6704 -5.6704 -8.2841 6.3296
##
## tau^2 (estimated amount of total heterogeneity): 0.0004 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0.0207
## I^2 (total heterogeneity / total variability): 90.39%
## H^2 (total variability / sampling variability): 10.40
##
## Test for Heterogeneity:
## Q(df = 2) = 26.7937, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1033 0.0127 -8.1424 <.0001 -0.1282 -0.0784 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.6366 -9.2733 -5.2733 -7.8870 6.7267
##
## tau^2 (estimated amount of total heterogeneity): 0.0005 (SE = 0.0006)
## tau (square root of estimated tau^2 value): 0.0231
## I^2 (total heterogeneity / total variability): 92.07%
## H^2 (total variability / sampling variability): 12.62
##
## Test for Heterogeneity:
## Q(df = 2) = 32.6058, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1032 0.0140 -7.3928 <.0001 -0.1306 -0.0759 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.5839 -9.1678 -5.1678 -7.7815 6.8322
##
## tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0006)
## tau (square root of estimated tau^2 value): 0.0238
## I^2 (total heterogeneity / total variability): 92.85%
## H^2 (total variability / sampling variability): 13.98
##
## Test for Heterogeneity:
## Q(df = 2) = 36.7312, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1091 0.0143 -7.6161 <.0001 -0.1372 -0.0810 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.8299 -5.6598 -1.6598 -4.2735 10.3402
##
## tau^2 (estimated amount of total heterogeneity): 0.0030 (SE = 0.0034)
## tau (square root of estimated tau^2 value): 0.0550
## I^2 (total heterogeneity / total variability): 90.70%
## H^2 (total variability / sampling variability): 10.75
##
## Test for Heterogeneity:
## Q(df = 2) = 17.5281, p-val = 0.0002
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3864 0.0335 -11.5326 <.0001 -0.4521 -0.3208 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.8824 -9.7648 -5.7648 -8.3785 6.2352
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0.0186
## I^2 (total heterogeneity / total variability): 79.04%
## H^2 (total variability / sampling variability): 4.77
##
## Test for Heterogeneity:
## Q(df = 2) = 10.1857, p-val = 0.0061
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1213 0.0122 -9.9247 <.0001 -0.1453 -0.0974 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.1469 -6.2938 -2.2938 -4.9075 9.7062
##
## tau^2 (estimated amount of total heterogeneity): 0.0021 (SE = 0.0028)
## tau (square root of estimated tau^2 value): 0.0455
## I^2 (total heterogeneity / total variability): 78.37%
## H^2 (total variability / sampling variability): 4.62
##
## Test for Heterogeneity:
## Q(df = 2) = 11.3391, p-val = 0.0034
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3905 0.0304 -12.8504 <.0001 -0.4501 -0.3310 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.9514 -7.9028 -3.9028 -6.5165 8.0972
##
## tau^2 (estimated amount of total heterogeneity): 0.0009 (SE = 0.0011)
## tau (square root of estimated tau^2 value): 0.0295
## I^2 (total heterogeneity / total variability): 83.06%
## H^2 (total variability / sampling variability): 5.90
##
## Test for Heterogeneity:
## Q(df = 2) = 10.0805, p-val = 0.0065
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0223 0.0188 1.1853 0.2359 -0.0146 0.0593
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.4836 -4.9671 -0.9671 -4.9671 11.0329
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0011)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 1) = 0.3560, p-val = 0.5508
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0922 0.0081 -11.4295 <.0001 -0.1080 -0.0764 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.3224 -6.6448 -2.6448 -6.6448 9.3552
##
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0.0049
## I^2 (total heterogeneity / total variability): 31.57%
## H^2 (total variability / sampling variability): 1.46
##
## Test for Heterogeneity:
## Q(df = 1) = 1.4613, p-val = 0.2267
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0125 0.0056 2.2358 0.0254 0.0015 0.0234 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.1199 -4.2398 -0.2398 -4.2398 11.7602
##
## tau^2 (estimated amount of total heterogeneity): 0.0001 (SE = 0.0012)
## tau (square root of estimated tau^2 value): 0.0099
## I^2 (total heterogeneity / total variability): 11.63%
## H^2 (total variability / sampling variability): 1.13
##
## Test for Heterogeneity:
## Q(df = 1) = 1.1316, p-val = 0.2874
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1009 0.0121 -8.3189 <.0001 -0.1247 -0.0771 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.8099 -7.6199 -3.6199 -7.6199 8.3801
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 1) = 0.4464, p-val = 0.5040
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0140 0.0039 3.5778 0.0003 0.0063 0.0216 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.3474 -2.6949 1.3051 -2.6949 13.3051
##
## tau^2 (estimated amount of total heterogeneity): 0.0035 (SE = 0.0056)
## tau (square root of estimated tau^2 value): 0.0592
## I^2 (total heterogeneity / total variability): 88.73%
## H^2 (total variability / sampling variability): 8.87
##
## Test for Heterogeneity:
## Q(df = 1) = 8.8744, p-val = 0.0029
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3622 0.0444 -8.1494 <.0001 -0.4493 -0.2751 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
ICC’s results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.2610 -6.5219 -2.5219 -5.1356 9.4781
##
## tau^2 (estimated amount of total heterogeneity): 0.0022 (SE = 0.0023)
## tau (square root of estimated tau^2 value): 0.0470
## I^2 (total heterogeneity / total variability): 98.15%
## H^2 (total variability / sampling variability): 53.97
##
## Test for Heterogeneity:
## Q(df = 2) = 133.9676, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.4705 0.0274 17.1517 <.0001 0.4167 0.5242 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.5973 -7.1946 -3.1946 -5.8083 8.8054
##
## tau^2 (estimated amount of total heterogeneity): 0.0016 (SE = 0.0016)
## tau (square root of estimated tau^2 value): 0.0396
## I^2 (total heterogeneity / total variability): 97.01%
## H^2 (total variability / sampling variability): 33.48
##
## Test for Heterogeneity:
## Q(df = 2) = 91.2519, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1667 0.0233 -7.1603 <.0001 -0.2124 -0.1211 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.5135 -7.0269 -3.0269 -5.6406 8.9731
##
## tau^2 (estimated amount of total heterogeneity): 0.0017 (SE = 0.0018)
## tau (square root of estimated tau^2 value): 0.0413
## I^2 (total heterogeneity / total variability): 97.28%
## H^2 (total variability / sampling variability): 36.73
##
## Test for Heterogeneity:
## Q(df = 2) = 102.4079, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1643 0.0243 -6.7657 <.0001 -0.2119 -0.1167 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.6276 -7.2551 -3.2551 -5.8688 8.7449
##
## tau^2 (estimated amount of total heterogeneity): 0.0015 (SE = 0.0016)
## tau (square root of estimated tau^2 value): 0.0390
## I^2 (total heterogeneity / total variability): 97.07%
## H^2 (total variability / sampling variability): 34.13
##
## Test for Heterogeneity:
## Q(df = 2) = 94.9305, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1685 0.0229 -7.3422 <.0001 -0.2134 -0.1235 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.7595 -5.5190 -1.5190 -4.1327 10.4810
##
## tau^2 (estimated amount of total heterogeneity): 0.0033 (SE = 0.0036)
## tau (square root of estimated tau^2 value): 0.0571
## I^2 (total heterogeneity / total variability): 90.72%
## H^2 (total variability / sampling variability): 10.78
##
## Test for Heterogeneity:
## Q(df = 2) = 17.8862, p-val = 0.0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3723 0.0347 -10.7145 <.0001 -0.4404 -0.3042 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.2003 -6.4006 -2.4006 -5.0143 9.5994
##
## tau^2 (estimated amount of total heterogeneity): 0.0023 (SE = 0.0024)
## tau (square root of estimated tau^2 value): 0.0477
## I^2 (total heterogeneity / total variability): 95.90%
## H^2 (total variability / sampling variability): 24.39
##
## Test for Heterogeneity:
## Q(df = 2) = 55.6032, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1799 0.0283 -6.3562 <.0001 -0.2354 -0.1244 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.5275 -9.0549 -5.0549 -7.6686 6.9451
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 1.6995, p-val = 0.4275
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3623 0.0110 -33.0510 <.0001 -0.3838 -0.3408 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.7081 -7.4162 -3.4162 -6.0300 8.5838
##
## tau^2 (estimated amount of total heterogeneity): 0.0011 (SE = 0.0013)
## tau (square root of estimated tau^2 value): 0.0330
## I^2 (total heterogeneity / total variability): 85.37%
## H^2 (total variability / sampling variability): 6.84
##
## Test for Heterogeneity:
## Q(df = 2) = 9.1605, p-val = 0.0103
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0255 0.0209 1.2200 0.2224 -0.0154 0.0663
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.2358 -2.4716 1.5284 -2.4716 13.5284
##
## tau^2 (estimated amount of total heterogeneity): 0.0041 (SE = 0.0070)
## tau (square root of estimated tau^2 value): 0.0637
## I^2 (total heterogeneity / total variability): 82.13%
## H^2 (total variability / sampling variability): 5.59
##
## Test for Heterogeneity:
## Q(df = 1) = 5.5946, p-val = 0.0180
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1150 0.0490 -2.3456 0.0190 -0.2111 -0.0189 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.8503 -3.7006 0.2994 -3.7006 12.2994
##
## tau^2 (estimated amount of total heterogeneity): 0.0014 (SE = 0.0020)
## tau (square root of estimated tau^2 value): 0.0372
## I^2 (total heterogeneity / total variability): 95.87%
## H^2 (total variability / sampling variability): 24.23
##
## Test for Heterogeneity:
## Q(df = 1) = 24.2274, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0057 0.0269 0.2125 0.8317 -0.0470 0.0584
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.4810 -2.9620 1.0380 -2.9620 13.0380
##
## tau^2 (estimated amount of total heterogeneity): 0.0022 (SE = 0.0043)
## tau (square root of estimated tau^2 value): 0.0467
## I^2 (total heterogeneity / total variability): 71.97%
## H^2 (total variability / sampling variability): 3.57
##
## Test for Heterogeneity:
## Q(df = 1) = 3.5676, p-val = 0.0589
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1321 0.0376 -3.5157 0.0004 -0.2058 -0.0585 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.9506 -3.9012 0.0988 -3.9012 12.0988
##
## tau^2 (estimated amount of total heterogeneity): 0.0011 (SE = 0.0017)
## tau (square root of estimated tau^2 value): 0.0336
## I^2 (total heterogeneity / total variability): 95.16%
## H^2 (total variability / sampling variability): 20.66
##
## Test for Heterogeneity:
## Q(df = 1) = 20.6555, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0083 0.0243 0.3429 0.7317 -0.0393 0.0560
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.0458 -2.0917 1.9083 -2.0917 13.9083
##
## tau^2 (estimated amount of total heterogeneity): 0.0067 (SE = 0.0102)
## tau (square root of estimated tau^2 value): 0.0822
## I^2 (total heterogeneity / total variability): 93.35%
## H^2 (total variability / sampling variability): 15.04
##
## Test for Heterogeneity:
## Q(df = 1) = 15.0437, p-val = 0.0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3781 0.0601 -6.2896 <.0001 -0.4959 -0.2603 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
ICC’s results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.7904 -5.5807 -1.5807 -4.1945 10.4193
##
## tau^2 (estimated amount of total heterogeneity): 0.0035 (SE = 0.0036)
## tau (square root of estimated tau^2 value): 0.0595
## I^2 (total heterogeneity / total variability): 98.65%
## H^2 (total variability / sampling variability): 74.17
##
## Test for Heterogeneity:
## Q(df = 2) = 148.7919, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.4102 0.0346 11.8512 <.0001 0.3424 0.4781 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.9206 -9.8412 -5.8412 -8.4549 6.1588
##
## tau^2 (estimated amount of total heterogeneity): 0.0004 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0.0197
## I^2 (total heterogeneity / total variability): 87.96%
## H^2 (total variability / sampling variability): 8.30
##
## Test for Heterogeneity:
## Q(df = 2) = 21.5199, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1719 0.0122 -14.0513 <.0001 -0.1959 -0.1480 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.0251 -10.0503 -6.0503 -8.6640 5.9497
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0004)
## tau (square root of estimated tau^2 value): 0.0185
## I^2 (total heterogeneity / total variability): 86.71%
## H^2 (total variability / sampling variability): 7.53
##
## Test for Heterogeneity:
## Q(df = 2) = 19.2452, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1718 0.0116 -14.7734 <.0001 -0.1946 -0.1490 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.2083 -10.4166 -6.4166 -9.0303 5.5834
##
## tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0003)
## tau (square root of estimated tau^2 value): 0.0168
## I^2 (total heterogeneity / total variability): 84.60%
## H^2 (total variability / sampling variability): 6.49
##
## Test for Heterogeneity:
## Q(df = 2) = 16.4534, p-val = 0.0003
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1759 0.0107 -16.4728 <.0001 -0.1968 -0.1550 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.8421 -5.6842 -1.6842 -4.2979 10.3158
##
## tau^2 (estimated amount of total heterogeneity): 0.0029 (SE = 0.0033)
## tau (square root of estimated tau^2 value): 0.0542
## I^2 (total heterogeneity / total variability): 89.39%
## H^2 (total variability / sampling variability): 9.43
##
## Test for Heterogeneity:
## Q(df = 2) = 15.1697, p-val = 0.0005
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2676 0.0332 -8.0552 <.0001 -0.3327 -0.2025 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.1667 -8.3333 -4.3333 -6.9471 7.6667
##
## tau^2 (estimated amount of total heterogeneity): 0.0007 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0265
## I^2 (total heterogeneity / total variability): 86.97%
## H^2 (total variability / sampling variability): 7.67
##
## Test for Heterogeneity:
## Q(df = 2) = 10.5568, p-val = 0.0051
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1679 0.0167 -10.0754 <.0001 -0.2006 -0.1352 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.5565 -5.1131 -1.1131 -3.7268 10.8869
##
## tau^2 (estimated amount of total heterogeneity): 0.0039 (SE = 0.0048)
## tau (square root of estimated tau^2 value): 0.0625
## I^2 (total heterogeneity / total variability): 87.12%
## H^2 (total variability / sampling variability): 7.76
##
## Test for Heterogeneity:
## Q(df = 2) = 18.7876, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2323 0.0397 -5.8503 <.0001 -0.3101 -0.1545 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.1625 -6.3251 -2.3251 -4.9388 9.6749
##
## tau^2 (estimated amount of total heterogeneity): 0.0021 (SE = 0.0024)
## tau (square root of estimated tau^2 value): 0.0460
## I^2 (total heterogeneity / total variability): 91.02%
## H^2 (total variability / sampling variability): 11.14
##
## Test for Heterogeneity:
## Q(df = 2) = 15.2978, p-val = 0.0005
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0125 0.0281 -0.4464 0.6553 -0.0675 0.0425
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.9746 -3.9492 0.0508 -3.9492 12.0508
##
## tau^2 (estimated amount of total heterogeneity): 0.0001 (SE = 0.0016)
## tau (square root of estimated tau^2 value): 0.0117
## I^2 (total heterogeneity / total variability): 12.10%
## H^2 (total variability / sampling variability): 1.14
##
## Test for Heterogeneity:
## Q(df = 1) = 1.1377, p-val = 0.2861
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1592 0.0135 -11.8350 <.0001 -0.1856 -0.1329 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.3943 -4.7886 -0.7886 -4.7886 11.2114
##
## tau^2 (estimated amount of total heterogeneity): 0.0004 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0205
## I^2 (total heterogeneity / total variability): 85.89%
## H^2 (total variability / sampling variability): 7.09
##
## Test for Heterogeneity:
## Q(df = 1) = 7.0886, p-val = 0.0078
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0066 0.0155 -0.4251 0.6707 -0.0371 0.0238
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.7685 -3.5370 0.4630 -3.5370 12.4630
##
## tau^2 (estimated amount of total heterogeneity): 0.0007 (SE = 0.0024)
## tau (square root of estimated tau^2 value): 0.0270
## I^2 (total heterogeneity / total variability): 42.82%
## H^2 (total variability / sampling variability): 1.75
##
## Test for Heterogeneity:
## Q(df = 1) = 1.7490, p-val = 0.1860
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1728 0.0246 -7.0123 <.0001 -0.2211 -0.1245 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.2911 -4.5823 -0.5823 -4.5823 11.4177
##
## tau^2 (estimated amount of total heterogeneity): 0.0005 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0231
## I^2 (total heterogeneity / total variability): 88.79%
## H^2 (total variability / sampling variability): 8.92
##
## Test for Heterogeneity:
## Q(df = 1) = 8.9219, p-val = 0.0028
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0060 0.0173 -0.3497 0.7266 -0.0399 0.0278
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.2096 -2.4193 1.5807 -2.4193 13.5807
##
## tau^2 (estimated amount of total heterogeneity): 0.0047 (SE = 0.0074)
## tau (square root of estimated tau^2 value): 0.0687
## I^2 (total heterogeneity / total variability): 90.66%
## H^2 (total variability / sampling variability): 10.71
##
## Test for Heterogeneity:
## Q(df = 1) = 10.7069, p-val = 0.0011
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2531 0.0510 -4.9601 <.0001 -0.3532 -0.1531 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
ICC’s results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.0561 -6.1122 -2.1122 -4.7259 9.8878
##
## tau^2 (estimated amount of total heterogeneity): 0.0027 (SE = 0.0027)
## tau (square root of estimated tau^2 value): 0.0518
## I^2 (total heterogeneity / total variability): 97.97%
## H^2 (total variability / sampling variability): 49.24
##
## Test for Heterogeneity:
## Q(df = 2) = 77.9783, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.3857 0.0302 12.7578 <.0001 0.3265 0.4450 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.6466 -7.2932 -3.2932 -5.9069 8.7068
##
## tau^2 (estimated amount of total heterogeneity): 0.0015 (SE = 0.0015)
## tau (square root of estimated tau^2 value): 0.0386
## I^2 (total heterogeneity / total variability): 97.29%
## H^2 (total variability / sampling variability): 36.93
##
## Test for Heterogeneity:
## Q(df = 2) = 95.7654, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0830 0.0227 -3.6591 0.0003 -0.1274 -0.0385 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.6205 -7.2410 -3.2410 -5.8547 8.7590
##
## tau^2 (estimated amount of total heterogeneity): 0.0015 (SE = 0.0016)
## tau (square root of estimated tau^2 value): 0.0391
## I^2 (total heterogeneity / total variability): 97.37%
## H^2 (total variability / sampling variability): 38.02
##
## Test for Heterogeneity:
## Q(df = 2) = 99.0487, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0835 0.0230 -3.6326 0.0003 -0.1285 -0.0384 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.6806 -7.3611 -3.3611 -5.9748 8.6389
##
## tau^2 (estimated amount of total heterogeneity): 0.0014 (SE = 0.0015)
## tau (square root of estimated tau^2 value): 0.0379
## I^2 (total heterogeneity / total variability): 97.26%
## H^2 (total variability / sampling variability): 36.44
##
## Test for Heterogeneity:
## Q(df = 2) = 94.0062, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0852 0.0223 -3.8207 0.0001 -0.1289 -0.0415 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.2578 -6.5156 -2.5156 -5.1293 9.4844
##
## tau^2 (estimated amount of total heterogeneity): 0.0019 (SE = 0.0023)
## tau (square root of estimated tau^2 value): 0.0439
## I^2 (total heterogeneity / total variability): 86.45%
## H^2 (total variability / sampling variability): 7.38
##
## Test for Heterogeneity:
## Q(df = 2) = 15.0488, p-val = 0.0005
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2472 0.0274 -9.0172 <.0001 -0.3009 -0.1935 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.5915 -7.1831 -3.1831 -5.7968 8.8169
##
## tau^2 (estimated amount of total heterogeneity): 0.0015 (SE = 0.0017)
## tau (square root of estimated tau^2 value): 0.0393
## I^2 (total heterogeneity / total variability): 94.73%
## H^2 (total variability / sampling variability): 18.98
##
## Test for Heterogeneity:
## Q(df = 2) = 52.2869, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0907 0.0235 -3.8545 0.0001 -0.1368 -0.0446 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.5542 -5.1085 -1.1085 -3.7222 10.8915
##
## tau^2 (estimated amount of total heterogeneity): 0.0038 (SE = 0.0046)
## tau (square root of estimated tau^2 value): 0.0619
## I^2 (total heterogeneity / total variability): 88.11%
## H^2 (total variability / sampling variability): 8.41
##
## Test for Heterogeneity:
## Q(df = 2) = 18.3569, p-val = 0.0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2313 0.0391 -5.9189 <.0001 -0.3078 -0.1547 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.3665 -6.7329 -2.7329 -5.3467 9.2671
##
## tau^2 (estimated amount of total heterogeneity): 0.0017 (SE = 0.0019)
## tau (square root of estimated tau^2 value): 0.0412
## I^2 (total heterogeneity / total variability): 91.15%
## H^2 (total variability / sampling variability): 11.31
##
## Test for Heterogeneity:
## Q(df = 2) = 13.4856, p-val = 0.0012
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0143 0.0252 0.5671 0.5706 -0.0351 0.0636
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.7350 -3.4701 0.5299 -3.4701 12.5299
##
## tau^2 (estimated amount of total heterogeneity): 0.0010 (SE = 0.0026)
## tau (square root of estimated tau^2 value): 0.0313
## I^2 (total heterogeneity / total variability): 53.72%
## H^2 (total variability / sampling variability): 2.16
##
## Test for Heterogeneity:
## Q(df = 1) = 2.1606, p-val = 0.1416
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0604 0.0272 -2.2214 0.0263 -0.1137 -0.0071 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.9445 -7.8890 -3.8890 -7.8890 8.1110
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 1) = 0.0694, p-val = 0.7922
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0053 0.0037 1.4362 0.1510 -0.0019 0.0125
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Meta-analysis:
Age effect
results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.5362 -3.0724 0.9276 -3.0724 12.9276
##
## tau^2 (estimated amount of total heterogeneity): 0.0019 (SE = 0.0038)
## tau (square root of estimated tau^2 value): 0.0433
## I^2 (total heterogeneity / total variability): 69.23%
## H^2 (total variability / sampling variability): 3.25
##
## Test for Heterogeneity:
## Q(df = 1) = 3.2498, p-val = 0.0714
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0719 0.0353 -2.0402 0.0413 -0.1410 -0.0028 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age\({ }^{2}\) effect
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.9813 -7.9626 -3.9626 -7.9626 8.0374
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 1) = 0.0092, p-val = 0.9234
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0054 0.0037 1.4748 0.1403 -0.0018 0.0126
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 2; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.9001 -3.8003 0.1997 -3.8003 12.1997
##
## tau^2 (estimated amount of total heterogeneity): 0.0009 (SE = 0.0019)
## tau (square root of estimated tau^2 value): 0.0297
## I^2 (total heterogeneity / total variability): 67.29%
## H^2 (total variability / sampling variability): 3.06
##
## Test for Heterogeneity:
## Q(df = 1) = 3.0574, p-val = 0.0804
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2230 0.0256 -8.7260 <.0001 -0.2730 -0.1729 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ICC effect:
Age effect:
Age effect:
Age effect:
Gender effect:
Age effect:
Gender effect:
Age \(\times\) Gender
effect:
Age effect:
Age\({ }^{2}\)
effect:
Age effect:
Age\({ }^{2}\)
effect:
Gender effect:
This section refers to the section “Cohort effects” in the main manuscript. It reports results for 2 additional multilevel models and respective meta-analyses of general domain.
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 10.2762 -20.5525 -16.5525 -16.3936 -14.1525
##
## tau^2 (estimated amount of total heterogeneity): 0.0042 (SE = 0.0022)
## tau (square root of estimated tau^2 value): 0.0648
## I^2 (total heterogeneity / total variability): 98.93%
## H^2 (total variability / sampling variability): 93.56
##
## Test for Heterogeneity:
## Q(df = 8) = 372.6337, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0875 0.0220 -3.9779 <.0001 -0.1305 -0.0444 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.6802 -13.3603 -9.3603 -9.2014 -6.9603
##
## tau^2 (estimated amount of total heterogeneity): 0.0106 (SE = 0.0056)
## tau (square root of estimated tau^2 value): 0.1030
## I^2 (total heterogeneity / total variability): 97.94%
## H^2 (total variability / sampling variability): 48.59
##
## Test for Heterogeneity:
## Q(df = 8) = 313.6139, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2551 0.0354 -7.2142 <.0001 -0.3245 -0.1858 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.1317 -4.2635 -0.2635 -0.1046 2.1365
##
## tau^2 (estimated amount of total heterogeneity): 0.0329 (SE = 0.0173)
## tau (square root of estimated tau^2 value): 0.1815
## I^2 (total heterogeneity / total variability): 98.19%
## H^2 (total variability / sampling variability): 55.10
##
## Test for Heterogeneity:
## Q(df = 8) = 397.3373, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0382 0.0621 0.6141 0.5392 -0.0836 0.1600
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of general risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 11.1627 -22.3255 -18.3255 -18.1666 -15.9255
##
## tau^2 (estimated amount of total heterogeneity): 0.0030 (SE = 0.0017)
## tau (square root of estimated tau^2 value): 0.0545
## I^2 (total heterogeneity / total variability): 96.18%
## H^2 (total variability / sampling variability): 26.17
##
## Test for Heterogeneity:
## Q(df = 8) = 108.7200, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0872 0.0194 -4.5046 <.0001 -0.1251 -0.0492 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.6262 -13.2524 -9.2524 -9.0935 -6.8524
##
## tau^2 (estimated amount of total heterogeneity): 0.0102 (SE = 0.0056)
## tau (square root of estimated tau^2 value): 0.1008
## I^2 (total heterogeneity / total variability): 95.50%
## H^2 (total variability / sampling variability): 22.21
##
## Test for Heterogeneity:
## Q(df = 8) = 152.1503, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2536 0.0355 -7.1446 <.0001 -0.3231 -0.1840 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## -4.0503 8.1005 12.1005 12.2594 14.5005
##
## tau^2 (estimated amount of total heterogeneity): 0.1539 (SE = 0.0828)
## tau (square root of estimated tau^2 value): 0.3924
## I^2 (total heterogeneity / total variability): 97.36%
## H^2 (total variability / sampling variability): 37.91
##
## Test for Heterogeneity:
## Q(df = 8) = 260.2689, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.1471 0.1360 1.0815 0.2795 -0.1195 0.4137
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 15.6897 -31.3794 -27.3794 -27.2205 -24.9794
##
## tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0.0247
## I^2 (total heterogeneity / total variability): 73.53%
## H^2 (total variability / sampling variability): 3.78
##
## Test for Heterogeneity:
## Q(df = 8) = 33.0329, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0142 0.0107 1.3280 0.1842 -0.0068 0.0352
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Age group effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.1910 -4.3820 -0.3820 -0.2232 2.0180
##
## tau^2 (estimated amount of total heterogeneity): 0.0310 (SE = 0.0170)
## tau (square root of estimated tau^2 value): 0.1761
## I^2 (total heterogeneity / total variability): 96.24%
## H^2 (total variability / sampling variability): 26.63
##
## Test for Heterogeneity:
## Q(df = 8) = 125.9136, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0693 0.0616 -1.1247 0.2607 -0.1902 0.0515
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.0234 -10.0467 -6.0467 -5.8878 -3.6467
##
## tau^2 (estimated amount of total heterogeneity): 0.0022 (SE = 0.0047)
## tau (square root of estimated tau^2 value): 0.0472
## I^2 (total heterogeneity / total variability): 22.13%
## H^2 (total variability / sampling variability): 1.28
##
## Test for Heterogeneity:
## Q(df = 8) = 10.0050, p-val = 0.2647
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0435 0.0346 1.2575 0.2086 -0.0243 0.1113
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 9; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 10.7090 -21.4179 -17.4179 -17.2591 -15.0179
##
## tau^2 (estimated amount of total heterogeneity): 0.0005 (SE = 0.0012)
## tau (square root of estimated tau^2 value): 0.0216
## I^2 (total heterogeneity / total variability): 17.04%
## H^2 (total variability / sampling variability): 1.21
##
## Test for Heterogeneity:
## Q(df = 8) = 8.6563, p-val = 0.3721
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0279 0.0174 -1.5989 0.1098 -0.0620 0.0063
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of general risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
This section refers to the section “Cohort effects” in the main manuscript. It reports results for 2 additional multilevel models and respective meta-analyses of financial domain.
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 28.7515 -57.5030 -53.5030 -51.6142 -52.7530
##
## tau^2 (estimated amount of total heterogeneity): 0.0022 (SE = 0.0009)
## tau (square root of estimated tau^2 value): 0.0469
## I^2 (total heterogeneity / total variability): 94.92%
## H^2 (total variability / sampling variability): 19.67
##
## Test for Heterogeneity:
## Q(df = 19) = 226.0036, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1012 0.0115 -8.7784 <.0001 -0.1238 -0.0786 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 14.5494 -29.0988 -25.0988 -23.2100 -24.3488
##
## tau^2 (estimated amount of total heterogeneity): 0.0116 (SE = 0.0041)
## tau (square root of estimated tau^2 value): 0.1075
## I^2 (total heterogeneity / total variability): 96.02%
## H^2 (total variability / sampling variability): 25.11
##
## Test for Heterogeneity:
## Q(df = 19) = 706.7879, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2764 0.0251 -11.0259 <.0001 -0.3255 -0.2273 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 18.5231 -37.0463 -33.0463 -31.1574 -32.2963
##
## tau^2 (estimated amount of total heterogeneity): 0.0061 (SE = 0.0026)
## tau (square root of estimated tau^2 value): 0.0783
## I^2 (total heterogeneity / total variability): 83.01%
## H^2 (total variability / sampling variability): 5.89
##
## Test for Heterogeneity:
## Q(df = 19) = 140.4335, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0555 0.0204 -2.7208 0.0065 -0.0955 -0.0155 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of financial risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 10.8917 -21.7835 -17.7835 -15.8946 -17.0335
##
## tau^2 (estimated amount of total heterogeneity): 0.0098 (SE = 0.0049)
## tau (square root of estimated tau^2 value): 0.0990
## I^2 (total heterogeneity / total variability): 96.27%
## H^2 (total variability / sampling variability): 26.79
##
## Test for Heterogeneity:
## Q(df = 19) = 126.2722, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1254 0.0283 -4.4353 <.0001 -0.1809 -0.0700 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 11.2943 -22.5887 -18.5887 -16.6998 -17.8387
##
## tau^2 (estimated amount of total heterogeneity): 0.0110 (SE = 0.0056)
## tau (square root of estimated tau^2 value): 0.1049
## I^2 (total heterogeneity / total variability): 87.37%
## H^2 (total variability / sampling variability): 7.92
##
## Test for Heterogeneity:
## Q(df = 19) = 428.7621, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3382 0.0305 -11.0949 <.0001 -0.3979 -0.2784 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.8220 -13.6440 -9.6440 -7.7551 -8.8940
##
## tau^2 (estimated amount of total heterogeneity): 0.0195 (SE = 0.0097)
## tau (square root of estimated tau^2 value): 0.1395
## I^2 (total heterogeneity / total variability): 73.99%
## H^2 (total variability / sampling variability): 3.85
##
## Test for Heterogeneity:
## Q(df = 19) = 91.5130, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0768 0.0395 -1.9443 0.0519 -0.1542 0.0006 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 16.9648 -33.9296 -29.9296 -28.0407 -29.1796
##
## tau^2 (estimated amount of total heterogeneity): 0.0008 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0.0284
## I^2 (total heterogeneity / total variability): 51.25%
## H^2 (total variability / sampling variability): 2.05
##
## Test for Heterogeneity:
## Q(df = 19) = 27.3557, p-val = 0.0966
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0262 0.0139 1.8876 0.0591 -0.0010 0.0535 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Age group effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 9.0280 -18.0560 -14.0560 -12.1672 -13.3060
##
## tau^2 (estimated amount of total heterogeneity): 0.0137 (SE = 0.0067)
## tau (square root of estimated tau^2 value): 0.1170
## I^2 (total heterogeneity / total variability): 85.78%
## H^2 (total variability / sampling variability): 7.03
##
## Test for Heterogeneity:
## Q(df = 19) = 140.8941, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0167 0.0329 0.5081 0.6114 -0.0478 0.0812
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.6855 -13.3711 -9.3711 -7.4822 -8.6211
##
## tau^2 (estimated amount of total heterogeneity): 0.0078 (SE = 0.0072)
## tau (square root of estimated tau^2 value): 0.0884
## I^2 (total heterogeneity / total variability): 36.26%
## H^2 (total variability / sampling variability): 1.57
##
## Test for Heterogeneity:
## Q(df = 19) = 29.5858, p-val = 0.0573
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0228 0.0353 0.6463 0.5181 -0.0464 0.0921
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 20; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 12.5941 -25.1883 -21.1883 -19.2994 -20.4383
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0008)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 19) = 23.7094, p-val = 0.2075
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0129 0.0139 0.9347 0.3499 -0.0142 0.0401
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of financial risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
This section refers to the section “Cohort effects” in the main manuscript. It reports results for 2 additional multilevel models and respective meta-analyses of driving domain..
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 6.7867 -13.5734 -9.5734 -12.1871 2.4266
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0001)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 1.2512, p-val = 0.5349
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0737 0.0044 -16.7106 <.0001 -0.0823 -0.0651 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.7930 -5.5861 -1.5861 -4.1998 10.4139
##
## tau^2 (estimated amount of total heterogeneity): 0.0032 (SE = 0.0035)
## tau (square root of estimated tau^2 value): 0.0562
## I^2 (total heterogeneity / total variability): 91.05%
## H^2 (total variability / sampling variability): 11.18
##
## Test for Heterogeneity:
## Q(df = 2) = 18.4480, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3884 0.0342 -11.3654 <.0001 -0.4553 -0.3214 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 0.7560 -1.5121 2.4879 -0.1258 14.4879
##
## tau^2 (estimated amount of total heterogeneity): 0.0268 (SE = 0.0277)
## tau (square root of estimated tau^2 value): 0.1638
## I^2 (total heterogeneity / total variability): 97.15%
## H^2 (total variability / sampling variability): 35.10
##
## Test for Heterogeneity:
## Q(df = 2) = 88.7856, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1602 0.0962 -1.6656 0.0958 -0.3486 0.0283 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of driving risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.5561 -7.1121 -3.1121 -5.7259 8.8879
##
## tau^2 (estimated amount of total heterogeneity): 0.0009 (SE = 0.0015)
## tau (square root of estimated tau^2 value): 0.0305
## I^2 (total heterogeneity / total variability): 72.19%
## H^2 (total variability / sampling variability): 3.60
##
## Test for Heterogeneity:
## Q(df = 2) = 7.3208, p-val = 0.0257
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0985 0.0225 -4.3666 <.0001 -0.1426 -0.0543 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.8714 -5.7427 -1.7427 -4.3565 10.2573
##
## tau^2 (estimated amount of total heterogeneity): 0.0021 (SE = 0.0037)
## tau (square root of estimated tau^2 value): 0.0463
## I^2 (total heterogeneity / total variability): 65.51%
## H^2 (total variability / sampling variability): 2.90
##
## Test for Heterogeneity:
## Q(df = 2) = 6.0399, p-val = 0.0488
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3892 0.0346 -11.2539 <.0001 -0.4570 -0.3214 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 0.5518 -1.1035 2.8965 0.2828 14.8965
##
## tau^2 (estimated amount of total heterogeneity): 0.0273 (SE = 0.0327)
## tau (square root of estimated tau^2 value): 0.1651
## I^2 (total heterogeneity / total variability): 84.12%
## H^2 (total variability / sampling variability): 6.30
##
## Test for Heterogeneity:
## Q(df = 2) = 11.2380, p-val = 0.0036
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2184 0.1044 -2.0918 0.0365 -0.4229 -0.0138 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.5063 -7.0125 -3.0125 -5.6262 8.9875
##
## tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0014)
## tau (square root of estimated tau^2 value): 0.0248
## I^2 (total heterogeneity / total variability): 45.80%
## H^2 (total variability / sampling variability): 1.85
##
## Test for Heterogeneity:
## Q(df = 2) = 3.0491, p-val = 0.2177
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0315 0.0211 1.4948 0.1350 -0.0098 0.0728
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.6057 -3.2114 0.7886 -1.8251 12.7886
##
## tau^2 (estimated amount of total heterogeneity): 0.0096 (SE = 0.0120)
## tau (square root of estimated tau^2 value): 0.0980
## I^2 (total heterogeneity / total variability): 84.72%
## H^2 (total variability / sampling variability): 6.54
##
## Test for Heterogeneity:
## Q(df = 2) = 14.5064, p-val = 0.0007
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0468 0.0630 0.7419 0.4582 -0.0768 0.1703
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.6223 -5.2446 -1.2446 -3.8583 10.7554
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0096)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.1828, p-val = 0.9127
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0297 0.0538 -0.5531 0.5802 -0.1352 0.0757
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.6440 -7.2880 -3.2880 -5.9017 8.7120
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0032)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.0039, p-val = 0.9981
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0030 0.0274 -0.1107 0.9118 -0.0567 0.0507
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of driving risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
This section refers to the section “Cohort effects” in the main manuscript. It reports results for 2 additional multilevel models and respective meta-analyses of recreational domain.
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.2498 -8.4997 -4.4997 -7.1134 7.5003
##
## tau^2 (estimated amount of total heterogeneity): 0.0008 (SE = 0.0009)
## tau (square root of estimated tau^2 value): 0.0274
## I^2 (total heterogeneity / total variability): 88.67%
## H^2 (total variability / sampling variability): 8.82
##
## Test for Heterogeneity:
## Q(df = 2) = 21.1885, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1712 0.0169 -10.1052 <.0001 -0.2044 -0.1380 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.7368 -5.4736 -1.4736 -4.0873 10.5264
##
## tau^2 (estimated amount of total heterogeneity): 0.0033 (SE = 0.0037)
## tau (square root of estimated tau^2 value): 0.0578
## I^2 (total heterogeneity / total variability): 90.94%
## H^2 (total variability / sampling variability): 11.04
##
## Test for Heterogeneity:
## Q(df = 2) = 18.1930, p-val = 0.0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3719 0.0351 -10.5831 <.0001 -0.4408 -0.3030 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.2241 -4.4481 -0.4481 -3.0618 11.5519
##
## tau^2 (estimated amount of total heterogeneity): 0.0052 (SE = 0.0062)
## tau (square root of estimated tau^2 value): 0.0724
## I^2 (total heterogeneity / total variability): 86.37%
## H^2 (total variability / sampling variability): 7.34
##
## Test for Heterogeneity:
## Q(df = 2) = 12.9078, p-val = 0.0016
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0008 0.0453 -0.0185 0.9853 -0.0895 0.0879
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of recreational risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.5231 -9.0462 -5.0462 -7.6599 6.9538
##
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0003)
## tau (square root of estimated tau^2 value): 0.0011
## I^2 (total heterogeneity / total variability): 0.31%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 1.2971, p-val = 0.5228
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2196 0.0073 -29.9886 <.0001 -0.2339 -0.2052 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.0424 -6.0848 -2.0848 -4.6985 9.9152
##
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0009)
## tau (square root of estimated tau^2 value): 0.0014
## I^2 (total heterogeneity / total variability): 0.18%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 2.7210, p-val = 0.2565
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.3597 0.0144 -24.9377 <.0001 -0.3879 -0.3314 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.0642 -6.1285 -2.1285 -4.7422 9.8715
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0053)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.5165, p-val = 0.7724
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0644 0.0392 -1.6429 0.1004 -0.1412 0.0124
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.3679 -8.7358 -4.7358 -7.3495 7.2642
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.4237, p-val = 0.8091
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0436 0.0101 4.3090 <.0001 0.0237 0.0634 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.1900 -4.3799 -0.3799 -2.9936 11.6201
##
## tau^2 (estimated amount of total heterogeneity): 0.0045 (SE = 0.0068)
## tau (square root of estimated tau^2 value): 0.0669
## I^2 (total heterogeneity / total variability): 71.13%
## H^2 (total variability / sampling variability): 3.46
##
## Test for Heterogeneity:
## Q(df = 2) = 7.4647, p-val = 0.0239
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0490 0.0472 1.0377 0.2994 -0.0435 0.1415
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 0.6239 -1.2477 2.7523 0.1385 14.7523
##
## tau^2 (estimated amount of total heterogeneity): 0.0169 (SE = 0.0278)
## tau (square root of estimated tau^2 value): 0.1301
## I^2 (total heterogeneity / total variability): 61.79%
## H^2 (total variability / sampling variability): 2.62
##
## Test for Heterogeneity:
## Q(df = 2) = 4.9435, p-val = 0.0844
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0046 0.0958 -0.0483 0.9615 -0.1924 0.1831
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.7474 -3.4947 0.5053 -2.1084 12.5053
##
## tau^2 (estimated amount of total heterogeneity): 0.0048 (SE = 0.0088)
## tau (square root of estimated tau^2 value): 0.0692
## I^2 (total heterogeneity / total variability): 56.88%
## H^2 (total variability / sampling variability): 2.32
##
## Test for Heterogeneity:
## Q(df = 2) = 4.6142, p-val = 0.0996
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0073 0.0533 -0.1360 0.8918 -0.1118 0.0973
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of recreational risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
This section refers to the section “Cohort effects” in the main manuscript. It reports results for 2 additional multilevel models and respective meta-analyses of occupational domain.
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 5.4446 -10.8893 -6.8893 -9.5030 5.1107
##
## tau^2 (estimated amount of total heterogeneity): 0.0002 (SE = 0.0003)
## tau (square root of estimated tau^2 value): 0.0124
## I^2 (total heterogeneity / total variability): 60.68%
## H^2 (total variability / sampling variability): 2.54
##
## Test for Heterogeneity:
## Q(df = 2) = 5.2176, p-val = 0.0736
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1448 0.0092 -15.7847 <.0001 -0.1628 -0.1269 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.9200 -5.8400 -1.8400 -4.4537 10.1600
##
## tau^2 (estimated amount of total heterogeneity): 0.0027 (SE = 0.0031)
## tau (square root of estimated tau^2 value): 0.0518
## I^2 (total heterogeneity / total variability): 88.53%
## H^2 (total variability / sampling variability): 8.72
##
## Test for Heterogeneity:
## Q(df = 2) = 14.0540, p-val = 0.0009
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2687 0.0319 -8.4238 <.0001 -0.3312 -0.2062 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.6635 -3.3269 0.6731 -1.9406 12.6731
##
## tau^2 (estimated amount of total heterogeneity): 0.0103 (SE = 0.0113)
## tau (square root of estimated tau^2 value): 0.1016
## I^2 (total heterogeneity / total variability): 91.69%
## H^2 (total variability / sampling variability): 12.03
##
## Test for Heterogeneity:
## Q(df = 2) = 28.9406, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1661 0.0615 -2.7026 0.0069 -0.2866 -0.0456 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of occupational risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.5442 -9.0884 -5.0884 -7.7021 6.9116
##
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0002)
## tau (square root of estimated tau^2 value): 0.0005
## I^2 (total heterogeneity / total variability): 0.07%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 1.3247, p-val = 0.5156
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1397 0.0071 -19.6772 <.0001 -0.1536 -0.1258 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.6767 -5.3534 -1.3534 -3.9671 10.6466
##
## tau^2 (estimated amount of total heterogeneity): 0.0026 (SE = 0.0043)
## tau (square root of estimated tau^2 value): 0.0512
## I^2 (total heterogeneity / total variability): 70.53%
## H^2 (total variability / sampling variability): 3.39
##
## Test for Heterogeneity:
## Q(df = 2) = 7.2533, p-val = 0.0266
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2640 0.0375 -7.0489 <.0001 -0.3374 -0.1906 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.0063 -6.0126 -2.0126 -4.6263 9.9874
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0070)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.1183, p-val = 0.9426
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0924 0.0469 -1.9701 0.0488 -0.1843 -0.0005 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.1122 -6.2244 -2.2244 -4.8381 9.7756
##
## tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0013)
## tau (square root of estimated tau^2 value): 0.0241
## I^2 (total heterogeneity / total variability): 47.16%
## H^2 (total variability / sampling variability): 1.89
##
## Test for Heterogeneity:
## Q(df = 2) = 3.7152, p-val = 0.1560
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0033 0.0205 0.1593 0.8734 -0.0369 0.0434
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.8063 -3.6126 0.3874 -2.2263 12.3874
##
## tau^2 (estimated amount of total heterogeneity): 0.0039 (SE = 0.0067)
## tau (square root of estimated tau^2 value): 0.0623
## I^2 (total heterogeneity / total variability): 60.47%
## H^2 (total variability / sampling variability): 2.53
##
## Test for Heterogeneity:
## Q(df = 2) = 4.6766, p-val = 0.0965
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0456 0.0469 -0.9727 0.3307 -0.1375 0.0463
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.9345 -3.8690 0.1310 -2.4827 12.1310
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0134)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.9161, p-val = 0.6325
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0153 0.0651 -0.2351 0.8142 -0.1428 0.1122
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.7929 -3.5858 0.4142 -2.1995 12.4142
##
## tau^2 (estimated amount of total heterogeneity): 0.0006 (SE = 0.0054)
## tau (square root of estimated tau^2 value): 0.0246
## I^2 (total heterogeneity / total variability): 10.55%
## H^2 (total variability / sampling variability): 1.12
##
## Test for Heterogeneity:
## Q(df = 2) = 3.0596, p-val = 0.2166
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0127 0.0386 0.3291 0.7421 -0.0630 0.0884
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of occupational risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
This section refers to the section “Cohort effects” in the main manuscript. It reports results for 2 additional multilevel models and respective meta-analyses of health domain.
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.8897 -7.7795 -3.7795 -6.3932 8.2205
##
## tau^2 (estimated amount of total heterogeneity): 0.0011 (SE = 0.0012)
## tau (square root of estimated tau^2 value): 0.0335
## I^2 (total heterogeneity / total variability): 92.82%
## H^2 (total variability / sampling variability): 13.92
##
## Test for Heterogeneity:
## Q(df = 2) = 33.8901, p-val < .0001
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0643 0.0202 -3.1876 0.0014 -0.1039 -0.0248 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 3.2767 -6.5533 -2.5533 -5.1670 9.4467
##
## tau^2 (estimated amount of total heterogeneity): 0.0019 (SE = 0.0022)
## tau (square root of estimated tau^2 value): 0.0434
## I^2 (total heterogeneity / total variability): 86.18%
## H^2 (total variability / sampling variability): 7.24
##
## Test for Heterogeneity:
## Q(df = 2) = 14.7409, p-val = 0.0006
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2480 0.0272 -9.1321 <.0001 -0.3012 -0.1947 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.4125 -8.8250 -4.8250 -7.4387 7.1750
##
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0007)
## tau (square root of estimated tau^2 value): 0.0036
## I^2 (total heterogeneity / total variability): 1.60%
## H^2 (total variability / sampling variability): 1.02
##
## Test for Heterogeneity:
## Q(df = 2) = 1.7089, p-val = 0.4255
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.1035 0.0150 -6.8950 <.0001 -0.1330 -0.0741 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of health risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
Meta-analysis results:
Age effect
results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.4865 -4.9729 -0.9729 -3.5866 11.0271
##
## tau^2 (estimated amount of total heterogeneity): 0.0019 (SE = 0.0028)
## tau (square root of estimated tau^2 value): 0.0436
## I^2 (total heterogeneity / total variability): 85.97%
## H^2 (total variability / sampling variability): 7.13
##
## Test for Heterogeneity:
## Q(df = 2) = 11.6293, p-val = 0.0030
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0671 0.0302 -2.2169 0.0266 -0.1263 -0.0078 *
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.6306 -5.2611 -1.2611 -3.8748 10.7389
##
## tau^2 (estimated amount of total heterogeneity): 0.0026 (SE = 0.0042)
## tau (square root of estimated tau^2 value): 0.0507
## I^2 (total heterogeneity / total variability): 71.13%
## H^2 (total variability / sampling variability): 3.46
##
## Test for Heterogeneity:
## Q(df = 2) = 7.3144, p-val = 0.0258
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.2552 0.0369 -6.9134 <.0001 -0.3276 -0.1829 ***
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.0146 -4.0292 -0.0292 -2.6430 11.9708
##
## tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0051)
## tau (square root of estimated tau^2 value): 0.0010
## I^2 (total heterogeneity / total variability): 0.02%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 2.6927, p-val = 0.2602
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0669 0.0385 -1.7363 0.0825 -0.1424 0.0086 .
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 4.6572 -9.3143 -5.3143 -7.9280 6.6857
##
## tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0005)
## tau (square root of estimated tau^2 value): 0
## I^2 (total heterogeneity / total variability): 0.00%
## H^2 (total variability / sampling variability): 1.00
##
## Test for Heterogeneity:
## Q(df = 2) = 0.0066, p-val = 0.9967
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0298 0.0098 3.0479 0.0023 0.0106 0.0489 **
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 2.5766 -5.1531 -1.1531 -3.7668 10.8469
##
## tau^2 (estimated amount of total heterogeneity): 0.0009 (SE = 0.0026)
## tau (square root of estimated tau^2 value): 0.0307
## I^2 (total heterogeneity / total variability): 35.67%
## H^2 (total variability / sampling variability): 1.55
##
## Test for Heterogeneity:
## Q(df = 2) = 3.5488, p-val = 0.1696
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0156 0.0288 -0.5436 0.5867 -0.0720 0.0407
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.1097 -2.2193 1.7807 -0.8330 13.7807
##
## tau^2 (estimated amount of total heterogeneity): 0.0088 (SE = 0.0190)
## tau (square root of estimated tau^2 value): 0.0939
## I^2 (total heterogeneity / total variability): 46.82%
## H^2 (total variability / sampling variability): 1.88
##
## Test for Heterogeneity:
## Q(df = 2) = 3.7544, p-val = 0.1530
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## -0.0275 0.0787 -0.3493 0.7269 -0.1817 0.1267
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Age \(\times\) Gender \(\times\) Age group effect results
##
## Random-Effects Model (k = 3; tau^2 estimator: REML)
##
## logLik deviance AIC BIC AICc
## 1.9460 -3.8920 0.1080 -2.5057 12.1080
##
## tau^2 (estimated amount of total heterogeneity): 0.0044 (SE = 0.0082)
## tau (square root of estimated tau^2 value): 0.0661
## I^2 (total heterogeneity / total variability): 56.22%
## H^2 (total variability / sampling variability): 2.28
##
## Test for Heterogeneity:
## Q(df = 2) = 4.5824, p-val = 0.1011
##
## Model Results:
##
## estimate se zval pval ci.lb ci.ub
## 0.0195 0.0513 0.3811 0.7031 -0.0810 0.1200
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Figure: Age trajectories of health risk-taking propensity for each sample and meta-analysis. The solid black line indicates the average trajectory weighted by the sample size. The colored lines represent the trajectory for individual samples
Models results:
## Linear mixed model fit by REML ['lmerMod']
## Formula: B_Age ~ 1 + (1 | Domain) + (1 | Continent) + (1 | Scale) + (1 |
## Survey_year) + (1 | Sample)
## Data: re_parameters
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
##
## REML criterion at convergence: -143.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5462 -0.2676 0.0665 0.3901 1.3347
##
## Random effects:
## Groups Name Variance Std.Dev.
## Sample (Intercept) 1.117e-03 3.341e-02
## Survey_year (Intercept) 4.761e-04 2.182e-02
## Domain (Intercept) 2.516e-03 5.016e-02
## Continent (Intercept) 3.725e-16 1.930e-08
## Scale (Intercept) 0.000e+00 0.000e+00
## Residual 3.267e-04 1.807e-02
## Number of obs: 42, groups:
## Sample, 26; Survey_year, 11; Domain, 7; Continent, 4; Scale, 3
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.12042 0.02255 -5.34
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Figure: Variance decomposition of age effect
Models results:
## Linear mixed model fit by REML ['lmerMod']
## Formula: B_Gender ~ 1 + (1 | Domain) + (1 | Continent) + (1 | Scale) +
## (1 | Survey_year) + (1 | Sample)
## Data: re_parameters
## Control: lmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+06))
##
## REML criterion at convergence: -68.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.2326 -0.3694 -0.0615 0.3482 1.5513
##
## Random effects:
## Groups Name Variance Std.Dev.
## Sample (Intercept) 7.914e-03 8.896e-02
## Survey_year (Intercept) 4.976e-03 7.054e-02
## Domain (Intercept) 9.145e-03 9.563e-02
## Continent (Intercept) 0.000e+00 0.000e+00
## Scale (Intercept) 7.649e-17 8.746e-09
## Residual 1.925e-03 4.387e-02
## Number of obs: 42, groups:
## Sample, 26; Survey_year, 11; Domain, 7; Continent, 4; Scale, 3
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) -0.24842 0.04976 -4.992
## optimizer (bobyqa) convergence code: 0 (OK)
## boundary (singular) fit: see help('isSingular')
Figure: Variance decomposition of gender effect
4.7. Social risk-taking
Intercept only model
Models results:
Fixed effect model
Models results:
Linear model
Models results:
Figure: Age trajectories of social risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. The lines represent the age trajectory of linear model results.
Linear with gender model
Models results:
Figure: Age trajectories of social risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender model results. Solid line = female, dotted line = male.
Linear with gender interaction model
Models results:
Figure: Age trajectories of social risk-taking propensity for each sample. The points represent moving average (window size = 5, window step = 2) of raw data. Circle = female, triangle = male. The lines represent the age trajectory of linear with gender interaction model results. Solid line = female, dotted line = male.
Quadratic model
Quadratic with gender model