class: center, middle, inverse, title-slide # What is ML ###
Data analytics for Psychology and Business
### April 2021 --- layout: true <div class="my-footer"> <span style="text-align:center"> <span> <img src="https://raw.githubusercontent.com/therbootcamp/therbootcamp.github.io/master/_sessions/_image/by-sa.png" height=14 style="vertical-align: middle"/> </span> <a href="https://cdsbasel.github.io/dataanalytics_2021"> <span style="padding-left:82px"> <font color="#7E7E7E"> https://cdsbasel.github.io/dataanalytics_2021 </font> </span> </a> <a href="https://therbootcamp.github.io/"> <font color="#7E7E7E"> Data analytics for Psychology and Business | April 2021 </font> </a> </span> </div> --- class: middle, center # What do you think? No Googling :) --- # What is machine learning? .pull-left45[ <ul> <li class="m1"><span><b>Machine learning is</b>...</span></li><br> <ul class="level"> <li><span>...an <high>area of artificial intelligence</high>...</span></li><br> <li><span>...that uses <high>statistical methods</high>...</span></li><br> <li><span>...to computers to <high>learn</high>...</span></li><br> <li><span>...i.e., to iteratively <high>improve</high> task performance...</span></li><br> <li><span>...on the basis of available <high>data</high>.</span></li> </ul> </ul> ] .pull-right45[ <p align = "center"> <img src="image/ml_robot.jpg" height=380px><br> <font style="font-size:10px">from <a href="https://medium.com/@dkwok94/machine-learning-for-my-grandma-ca242e97ef62">medium.com</a></font> </p> ] --- # ML's origin <div align="center"> <iframe width="800" height="450" src="https://www.youtube.com/embed/cNxadbrN_aI" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> </div> --- .pull-left3[ # Types of machine learning tasks <ul> <li class="m1"><span>There are many types of machine learning tasks, each of which call for different models.</span></li> <li class="m2"><span><high>We will focus on supervised machine learning</high>.</span></li> </ul> ] .pull-right65[ <br><br> <p align = "center"> <img src="image/mltypes.png" height=500px><br> <font style="font-size:10px">from <a href="image/mltypes.png">amazonaws.com</a></font> </p> ] --- # Data terminology .pull-left5[ <p> <table style="cellspacing:0; cellpadding:0; border:none; padding-top:10px"> <tr> <td bgcolor="white"> <b>Term</b> </td> <td bgcolor="white"> <b>Definition</b> </td> <td bgcolor="white"> <b>Example</b> </td> </tr> <tr> <td bgcolor="white"> <i>Case<br><font style="font-size:12px">(Fall)</font></i> </td> <td bgcolor="white"> Die <high>Unit of observation</high> in data. </td> <td bgcolor="white"> A patient, a site, etc. </td> </tr> <tr> <td bgcolor="white"> <i>Feature<br><font style="font-size:12px">(variable, predictor)</font></i> </td> <td bgcolor="white"> A measurable <high>property</high> of <i>cases</i>. </td> <td bgcolor="white"> Age, temperature, country, etc. </td> </tr> <tr> <td bgcolor="white"> <i>Criterion<br><font style="font-size:12px">(variable, criterion)</font></i> </td> <td bgcolor="white"> The <high>Feature</high> that you want to <high>predict</high>. </td> <td bgcolor="white"> Heart attack, sales, etc. </td> </tr> <tr> <td bgcolor="white"> <i>Data</i> </td> <td bgcolor="white"> Typically <high>rectangular</high> with <high>Cases in rows</high> and <high>Features in columns</high>. </td> <td bgcolor="white"> <mono>.csv</mono>, <mono>.xls</mono>, <mono>.sav</mono>, etc. </td> </tr> </table> </p> ] .pull-right4[ <p align = "center"> <img src="image/terminology.png"><br> </p> ] --- # Supervised learning .pull-left4[ <ul> <li class="m1"><span>The <high>dominant type</high> of machine learning.</span></li> <li class="m2"><span>Supervised learning uses <high>labeled data</high> to learn <high>a model</high> that relates the criterion to the features.</span></li> </ul> ] .pull-right5[ <p align = "center"> <img src="image/supervised.png"><br> </p> ] --- # 3 key (supervised) models <p align = "center" style="padding-top:20px"> <img src="image/models.png"><br> </p> --- # Unsupervised learning .pull-left5[ <ul> <li class="m1"><span>Analyses relationships between cases or features to <high>discover hidden structures</high>.</span></li><br> <ul class="level"> <li><span><high>Dimensionality reduction</high>: Group features on the basis of correlations into a smaller number of synthetic features.</span></li><br> <li><span><high>Clustering</high>: Group cases on the basis of similarities/distances into clusters.</span></li> </ul> </ul> ] .pull-right4[ <p align = "center" height=380px> <img src="image/iris_kmeans.png" height=400px><br> </p> ] --- # Reinforcement learning .pull-left5[ <ul> <li class="m1"><span>Domain <high>between supervised and unsupervised</high> learning.</span></li><br> <li class="m2"><span><high>Learns iteratively</high> on the basis of (minimal) feedback.</span></li><br> <li class="m3"><span>Used in:</span></li> <ul class="level"><br> <li><span>Modell fitting.</span></li><br> <li><span>Robotics.</span></li><br> <li><span>Games: Chess, Go, or Mario Kart.</span></li> </ul> </ul> ] .pull-right4[ <p align = "center"> <img src="image/roboarm.gif" width=320px><br> <font style="font-size:10px">from <a href="https://giphy.com/explore/reinforcement-learning">giphy.com</a></font> </p> <p align = "center"> <img src="image/mariokart.gif" width=320px><br> <font style="font-size:10px">from <a href="https://blogs.nvidia.com/blog/2017/04/14/tensorkart-ai-mario-kart/">nvidia.com</a></font> </p> ] --- class: middle, center <h1><a href="https://raw.githubusercontent.com/therbootcamp/ML-DHLab/main/TheRBootcamp.zip">Project</a></h1> --- class: middle, center <h1><a href=https://therbootcamp.github.io/ML-DHLab/index.html>Schedule</a></h1>